590 SERIES THREE PHASE CONVERTORS

PRODUCT MANUAL

HA059665

Issue 3

<u>WARNING</u>

NEVER WORK ON THE CONTROLLER, MOTOR, OR AUXILIARY EQUIPMENT WITHOUT FIRST ISOLATING ALL SUPPLIES TO THE SYSTEM.

CONTROLLER WARRANTY

For further details on SSD Controller Warranty and Repair refer to the Standard Conditions of Sale IA058393C

Copyright in this document is reserved to SSD Limited.

TABLE OF CONTENTS

1 INTRODUCTION 1 - 1	1
2 TECHNICAL DETAILS	1
2.1 General	1
2.2 Electrical Ratings 2 - 2	
2.3 Output Ratings	
2.4 Mechanical Details 2 - 4	1
3 PRODUCT CODE	L
4 BASIC INSTALLATION & WIRING INSTRUCTIONS	Į
4.1 Installation	L
4.2 Ventilation and Cooling	L
4.3 Basic Wiring Instructions 4 - 2	l
4.4 Notes on Wiring 4 - 4	1
4.5 Installation Drawings	
4.6 Wiring Diagrams	
5 TERMINAL DESCRIPTIONS	[
5.1 Control Board 5 - 1	Ĺ
5.2 Power Board	5
6 HARDWARE OVERVIEW 6 - 1	L
6.1 Control Circuits 6 - 1	L
6.2 Power Circuits	5
6.3 Hardware Block Diagram	
7 BLOCK DIAGRAM	
8 BASIC SETTING UP & OPERATING INSTRUCTIONS	
A. Installation Check List	
B. Preparation	
C. Checking the Drive and Setting up	5
D. Controller Performance Adjustment	

9 FRONT PANEL INDICATORS & MONITOR
POINTS
10 MAN MACHINE INTERFACE (MMI) 10 - 1
10.1 Overview 10 - 1
10.2 The Menu Tree Structure 10 - 2
10.3 Diagnostics 10 - 3
10.4 Diagnostic Descriptions 10 - 4
10.5 Setup Parameters 10 - 6
10.6 Setup Parameter Descriptions 10 - 7
10.7 Auto-tune 10 - 12
10.8 Password 10 - 13
10.9 Alarms 10 - 14
10.10 Alarm Description 10 - 16
10.11 Menus 10 - 19
10.12 Parameter Save 10 - 19
10.13 Serial Links 10 - 20
10.14 System 10 - 21
10.15 Tags 10 - 23
11 SERIAL COMMUNICATIONS 11 - 1
11.1 ASCII Communications 11 - 1
11.2 Binary Communications 11 - 9
11.3 Serial Link Mnemonics & Parameter Number Allocation
12 5703 SUPPORT 12 - 1
12.1 Overview 12 - 1
12.2 Hardware Description 12 - 1
12.3 Commissioning the 5703/1 12 - 4
590 - 593 Power Circuit and Configuration Drawings
APPENDIX A - Tag List APP - 1
APPENDIX B - Version 2 Software APP -
Modification Record
Sales and Service Address List

1 INTRODUCTION

The 590 series of motor speed controllers are designed as components which are fitted in a standard enclosure with associated control equipment. The controllers accept standard three phase supply voltages in the range 110 to 500 Volts A.C. and provide controlled D.C. output voltage and current for the armature and field and are suitable for powering D.C. shunt field and permanent magnet motors.

Control of the 590 series is implemented by means of a 16 Bit Microcontroller which provides many advanced features:-

- a) Complex control algorithms which are not achievable by simple analogue techniques.
- b) Software configurable control circuitry built around standard software blocks.
- c) Communication via a serial link with other drives or a host computer for advanced process system realisation.

The motor armature controllers include both regenerative and non-regenerative models.

Non-regenerative controllers consist of a fully-controlled Thyristor bridge full transient and overload protection, together with its associated electronic control circuitry, and provide accurate speed and/or torque control in one selected direction of rotation.

Regenerative controllers consist of two fully-controlled, Thyristor bridges together with a sophisticated electronic control of acceleration and deceleration, speed and torque in both directions of rotation.

All models of armature controller provide a field regulator as a standard option, the regulator consists of a full-wave half controlled single phase thyristor bridge with transient and overload protection. The regulator provides either a fixed voltage or fixed current source depending upon the selected mode of operation for constant torque applications. The field current mode of operation can be further enhanced to provide field weakening range for systems which required extended speed or constant horsepower control.

The control circuit is totally isolated from the power circuit, thus simplifying the interconnection of controllers within a system and improving operator safety. The control circuitry adjusts automatically to accept supply frequencies in the range 45-65 Hz and possesses high immunity to supply borne interference. The armature controllers are phase rotation insensitive.

All units are designed for simple and economical panel mounting using keyhole tags. If it is necessary to remove the controller from the panel, disconnection and reconnection is simplified by plug-in control connectors.

Standardisation of parts wherever possible throughout the range reduces the variety of spare parts required to maintain a multi-drive system. For example, the same basic control trigger PCB's are used in all types of three phase armature controller regardless of horsepower or bridge configuration.

Start-up and location of faults (both within the controller and external to it) are greatly assisted by the MMI display which automatically displays the first fault. The display also provides a powerful diagnostic tool with access to all alarms, inputs and principal software blocks in the controller. Front panel LED indicators provide an instantaneous display of the status of the drive, key inputs and outputs.

This manual covers the following models from the 590 series.

Three phase, regenerative, four quadrant armature controllers.

- 590 for currents up to 150 Amps.
- 592 for currents in the range 151 to 270 Amps.
- 594 for currents in the range 271 to 450 Amps.
- 596 for currents in the range 451 to 720 Amps.
- 598 external stack option for currents exceeding 721 Amps.

Three phase non-regenerative, two quadrant armature controllers.

- 591 for currents up to 150 Amps.
- 593 for currents in the range 151 to 270 Amps.
- 595 for currents in the range 271 to 450 Amps.
- 597 for currents in the range 451 to 720 Amps.
- 599 external stack option for currents exceeding 721 Amps.

All drives include the patented SSD extended firing range which means that regenerative or non-regenerative controllers can be operated at the same dc output voltages without de-rating for regenerative application.

2 TECHNICAL DETAILS

2.1 GENERAL

Control Circuits:	Fully isolated from power circuit.
Control Action:	Fully digital. Advanced PI with fully adaptive current loops for optimum dynamic performance. Self Tuning Current Loop utilising "Autotune" algorithm. Adjustable speed PI with integral defeat.
Speed Control:	By Armature Voltage feedback with IR compensation. By Encoder feedback or analogue tachogenerator.
Speed Range:	100 to 1 typical with tachogenerator feedback.
Steady State Accuracy:	 0.01 % Encoder Feedback with Digital setpoint (serial link or P3) 0.1 % Analogue Tach Feedback 2 % Voltage Feedback Absolute (0.0% error) using QUADRALOC Mk II digital controller. Note: Long term analogue accuracy is subject tachogenerator temperature stability.
Adjustments:	All adjustments are in software by serial link or on board pushbuttons and LCD display.
Protection:	Interline device networks. High energy MOV's. Overcurrent (instantaneous). Overcurrent (inverse time). Field failure. Speed feedback failure. Motor overtemperature. Thyristor Stack overtemperature (Force ventilated units). Thyristor "Trigger" failure. Zero-speed detection. Standstill logic. Stall protection.
Diagnostics:	Fully computerised with first fault latch and automatic display. Digital LCD monitoring. Full diagnostic information available on RS422/RS485. LED circuit state indication.
Operating Temperature Range:	0°C — +55°C Derate linearly above 35°C for force cooled units Derate linearly above 45°C for naturally cooled units
Storage:	-20°C — +55°C Protect from direct sunlight. Ensure dry, corrosive free environment.
Humidity:	85% Relative humidity maximum. Relative humidity is temperature dependent. If the ambient temperature falls the relative humidity will rise and may ultimately cause condensation. This should be avoided.
Atmosphere:	Non-flammable, non-condensing.
Encoder:	Maximum Microtach frequency 50KHz i.e. with a 1000 lines per revolution encoder the motor speed cannot exceed 3000 rpm.
	Maximum Encoder frequency 100K Hz i.e. with a 1000 lines per revolution encoder the motor speed cannot exceed 6000 rpm.

.

2.2 ELECTRICAL RATINGS

Power Configuration:	590, 592, 594, 596 591, 593, 595, 597 * External stack of	7, 599* -	Two Anti-parallel three ph One three phase fully cont	· -
Power Supply:	3-Phase, 45-65 Hz	, phase rotation is	nsensitive. No adjustment	required for frequency change.
Power	: Voltage ranges:	110-240v 380-415v 440-480v 500v 500-660v	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	599 only
	Supply Current:	(0 9 x Idc)	Amps ac rms	·
Coding	: Voltage ranges:	110-220v 220-500v 500-660v	~ ±10% ~ ±10%	599 only
Control and Fan* Supply	Single Phase, 45-6	5 Hz.		
Voltage:	Voltage ranges:	110-120v 220-240v	~ ±10% ~ ±10%	
	* Force ventilated	units.		
	Supply Power	{ Internal Fans Contactor	30VA 100 VA when fitted As contactor data sheet	fused at 400mAFS3fused at 1AFS1fused at 3AFS2
Reference Supplies:	(For speed and Current setpoints)		1 at 10mA Max. at 10mA Max.	
DC Supply	+24V Nominal Int Maximum output of Auxiliary loading a excessive fit a sepa	capability 6W or should be totalle	250mA. d before specification to c	heck DC supply loading if
DC Power Supply Loading	5701 Microtach an	d Microtach Op	tion Board	1.8W or 75mA
			•••••	
	5702/3 Encoder to	Fibre Optic Cor	vertor	1.2W or 50mA
	5702/6 Marker Pul	se Repeater		1.2W or 50mA
	5703/1 P3 Port Exp	pander	•••••	1.7W or 70mA
	Note:- When a	5701 Microtacl	and Microtach option bo	ard is used with a Serial Link

lote:- When a 5701 Microtach and Microtach option board is used with a Serial Link Option board and two relays the power supply is close to maximum, if a repeater is required the loading is exceeded.

2.3 OUTPUT RATINGS

2.3.1 Armature.

		59	0/1		592/3	594/5	596/7		598/9	
Output Current Ratings (Armature) 4	35A	70A	110A	150A	270A	450A 3	720A	950A	1100A	1388A
Nominal Power Rating @ 460V dc Assuming 95% Motor Efficiency	14.5KW (20HP)	29KW (40HP)	45KW (60HP)	60KW (80HP)	110KW (150HP)	190KW (250HP)	300K W (400HP)	395KW (530HP)	455KW (610HP)	575KW (770HP)
Maximum Rating Ambient 1	45°C	45°C	35°C	35°C	35°C	35°C	35°C	35°C	35°C	35°C
Cooling Forced or Natural	N	N	F	F	F	F	F	F	F	F
Cooling Fan Integral/ Separate			I	I	I	S 3	S	S	S	S
Overload Capacity Available (Armature Current) (2)	Y	Y	Y	Y	Y	Y	N	Y	Y	Y
Field Current Rating	10A	10A	10A	10A	10A	20A	20A	30A	30A	30A
Maximum Supply Voltage	500V	500V	500V	500V	500V	500V	500V	600V	600V	600V
Maximum Field Supply Voltage	500V	500V	500V	500V	500V	500V	500V	500V	500V	500V
Power Loss	105w	210w	330w	450w	710w	1350w	2160w	2850w	3300w	4164w
Installation Drawing	HG055805	HG055805	HG055806	HG055806	HG055807	HG057209	HG057449 ত]	HG057829	1

Derate linearly at 1% per degree centigrade for temperatures exceeding the maximum rating ambient. Maximum operating ambient is 55°C.

(2) The standard overload capacity available is 200% for 10 seconds, 150% for 30 seconds. 596/597 has no overload capacity at maximum current, at output currents less than 650Amps overload capacity is as normal.

3 A lower current version limited to 360Amps is available with an integral fan (HG057208).

Altitude derating, nominal sea level to 500 metres, derate above 500 metres at 1% per 200 metres up to maximum of 5000 metres.

For Installation Drawings for 720A Stack Assembly see: HG049669 Standard Mounting / HG054248 Bracket Mounting

2.3.2 Field.

Output Current Ratings: (Field)	10A 590/1/2
	20A 594/5/6
	30A 598/599

2.4 MECHANICAL DETAILS

<u>General</u>

- 1. All controllers should be mounted vertically in the cubicle to allow good air flow across the cooling fin. Naturally cooled units should be given special consideration to permit cool air entry into and hot air exit below and above the controller.
- 2. If the enclosure is totally enclosed the metal surface dissipates 50 watt sq. metre for a 10°c temperature rise.

590 and 591 Convertors

Mounting Centres:	Vertical - 400mm (15.75") Horizontal - 200mm (7.87")	
	Rating up to 32kw (40 HP)	Rating up to
Overall Width:	250mm (9.8")	<u>69kw (90 HP)</u> 250mm (9.8")
Overall Height:	415mm (16.5")	440mm (17.3")
Overall Depth:	170mm (6.7")	170mm (6.7")
Weight:	(10Kg-14Kg) (22lbs-30lbs)	(15Kg) (33.2lbs)
Minimum Airflow Clearance:	100mm(4") above 100mm(4") below	100mm(4") above 100mm(4") below
Nominal Blower Throughput:		100m3/Hour
Control Terminations:	Plug-on connectors with retaining catches.	
Power Terminations:	Bus-bars with 8mm screws and captive nuts.	
Access:	Hinge-down cover for keypad. Hinge-up cover for control circuit terminals and Hinge-out Control Printed Board with its own in	Option Modules. Independent cover.
592 and 593 Convertors		
Mounting Centres:	Vertical - 400mm (15.75") Horizontal - 200mm (7.87")	
Overall Width:	250mm (8.75")	
Overall Height:	500mm (19.7")	
Overall Depth:	210mm (8.3")	
Weight:	20Kg (441bs)	
Minimum Airflow Clearance:	150mm (6") above and 100 (4") below.	
Nominal Blower Throughput:	350m3/Hour.	
Control Terminations:	Plug-on connectors with retaining catches.	
Power Terminations:	Bus-bars with screws and captive nuts.	
Access:	Hinge-down cover for keypad. Hinge-up cover for control circuit terminals and Hinge-out Control Printed Board with its own in	Option Modules. dependent cover.

594 and 595 Convertors

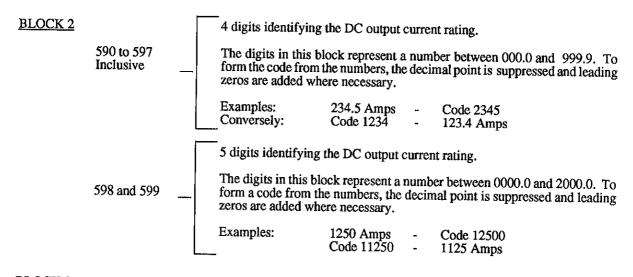
Mounting Centres:	Vertical - 600mm (23.6") Horizontal - 200mm (7.87")			
Overall Width:	250mm (8.75mm")	(322	2mm	(12.7") over dc terminals)
Overall Height:	705mm (27.75") Integral Fan 675mm (26.6") Roof Fan			
Overall Depth:	252mm (9.9")			
Weight:	30Kg (66lbs)			
Minimum Airflow Clearance:	100mm (4") below 150mm (6") above] J	ŀ	Integral Fan
	100mm (4") below duct for roof fan	ior	ŀ	Roof Fan
Nominal Blower Throughput:	490m ³ /hr Integral Fan			
Control Terminations:	Plug-on connectors with retaini	ing ca	atche	s.
Power Terminations:	AC Busbars with M12 screws a DC M10 screws and nuts.	and c	aptivo	e nuts.
Access:	Hinge-down cover for keypad. Hinge-up cover for control circu Hinge-out Control Printed Boar	uit te rd wi	rmina th its	als and Option Modules. own independent cover.

596 and 597 Convertors

Mounting Centres:	(see drawing)	
Overall Width:	319mm (12.6")	(362mm over dc terminals)
Overall Height:	920mm (36.2") (Module only	not including fan equipment and ducting).
Overall Depth:	194mm (7.6") to mounting pla 140mm (5.5") behind mountir	ane.
Weight:	65Kg (143lbs)	
Minimum Airflow Clearance:	See installation drawings HG()49669F and HG054248F.
Nominal Blower Throughput:	1000m3/Hour @ 80 bar for ra	ted output.
Control Terminations:	Plug-on connectors with retain	ning catches.
Power Terminations:	AC Busbars with M14 screws DC M10 bolts and nuts.	and captive nuts.
Access:	Hinge-down cover for keypad Hinge-up cover for control cir Hinge-out Control Printed Box	cuit terminals and Option Modules. ard with its own independent cover.

<u>3 PRODUCT CODE</u>

590 Series Three phase converters.


All members of the three phase converter range can be fully specified using a digit numerical order code.

Block No.	No. of Digits	Function
1	3	Basic product
2	4 or 5	Output current
3	1	Supply voltage (Power)
4	1	Field converter configuration
5	1	Supply voltage (Auxiliary)
6	1	User language
7	1	Speed feedback source
8	1	Serial link
9	4	Speed feedback calibration
10	3	Field voltage
11	3	Field current
12	3	Armature voltage
13	1	Armature current profile
14	2	Speed break 1
15	2	Armature current break 2
16	2	Speed break 2
The last two blocks in	n the product code allow	for special control features and special build options
17	2	Special hardware
18	3	Special software

The 18 blocks are defined as follows:-

<u>BLOCK 1</u> 3 Digits identifying the basic product.

590	3 phase 4 quadrant (regenerative) converter up to 150 amps.
591	3 phase 2 quadrant (non-regenerative) converter up to 150 amps.
592	3 phase 4 quadrant (regenerative) converter up to 270 amps.
593	3 phase 2 quadrant (non-regenerative) converter up to 270 amps.
594	3 phase 4 quadrant (regenerative) converter up to 450 amps.
595	3 phase 2 quadrant (non-regenerative) converter up to 450 amps.
596	3 phase 4 quadrant (regenerative) converter up to 720 amps.
597	3 phase 2 quadrant (non-regenerative) converter up to 720 amps.
598	3 phase 4 quadrant (regenerative) external stacks up to 1388 amp.
599	3 phase 2 quadrant (non-regenerative) external stacks up to 1388 amp.
	· · · · ·

<u>BLOCK 3</u>	1 Digit identifying the 3 Phase AC power, supply voltage.
----------------	---

$\begin{array}{cccc} 0 & 110v \\ 1 & 115v \\ 2 & 208v \\ 3 & 220v \\ 4 & 240v \\ \end{array}$	
4 240v	
4 240v 5 380v	
6 415v	
7 440v	
8 460v	
9 480v	
A 500v	
B 550v	
-	
D 660v External Stacks only	

BLOCK 4	1 Digit identifying field supply configuration.	
	0 Externally supplied field.	
	1 Internally supplied field regulator.	
	(Note: This digit requires a second paret product code (Blocks 10 to 16).)	
	2 Internally supplied full wave rectifier. *	
	3 Internally supplied half wave rectifier. *	
	4 Externally supplied field regulator.	
	(Note: This digit requires a second part product code (Blocks 10 to 16).)	
	5 Externally supplied full wave rectifier. *	
	6 Externally supplied half wave rectifier. *	
	7	
	8 Internally supplied 3 phase rectifier. *	
	9	
	Note: Options marked with an asterisk will only be supplied on spec	cial request.
BLOCK 5	1 Digit identifying the auxiliary AC control supply voltage.	
	0 110v	
	1 115v	
	2 3 220v	
	3 220v 4 240v	

BLOCK 6	1 Digit code	to define user interface language.
	0	English
BLOCK 7	1 Digit code	identifying the speed feedback source.
	0	Armature Voltage.
	1	DC Tacho.
	2	5701 Microtach.
	3	Wire ended encoder.
BLOCK 8	1 Digit code	identifying the main serial link port (P2).
	0	No Serial Link.
	1	Serial Link Fitted RS422/485
BLOCK 9	4 Digits code	e identifying full speed.
	Note:	Block 9 is dependent upon Block 7
	IF	Block 7 is 0 i.e. Armature Voltage Feedback.
	The four digit to the nearest	s form a number which represents the ACTUAL armature voltage at full speed, rounded whole number and with leading zeros added where necessary.
	For example:	490 volts - Code 0490 Code 0500 - 500 volts
	IF	Block 7 is 1 i.e. DC Tachogenerator Feedback.
	The four digit rounded to the	s form a number which represents the ACTUAL tacho feedback voltage at full speed, e nearest whole number and with leading zeros added where necessary.
		123 volts - Code 0123 Code 0090 - 90 volts
	IE	Block 7 is 2 i.e. 5701 MICROTACH Feedback and 3 i.e. an Encoder.
	The four digits speed, rounded	form a number which represents the ACTUAL motor revolutions per minute at full to the nearest whole number and with leading zeros added where necessary.
	For example:	1500RPM - Code 1500 Code 1000 - 1000RPM
BLOCK 10	3 Digits ident	ifying the DC field voltage
	The digits in number with I	this block represent the DC field voltage of the motor rounded to the nearest whole eading zeros added where necessary.
	For example:	100 volts - Code 100 Code 180 - 180 Volts
BLOCK 11	3 Digits ident	ifying the DC field current
	00.0 to 30.0.	his block represent the DC field current of the motor, the current being in the range To form the code from the numbers, the decimal point is suppressed and leading zeros ere necessary.
	For example:	12.5 Amps - Code 125 Code 085 - 8.5 Amps
BLOCK 12	3 Digits ident	fying the armature voltage at base speed.
_	The digits in the is the motor sp	his block represent the armature voltage of the motor at base speed. Where base speed beed at full field, full armature volts. To form the code from the voltage, round to the number with leading zeros added where necessary.

For example: 400 volts - Code 400 Code 500 - 500 Volts

- BLOCK 13 1 Digit identifying the requirement for armature current profile.
 - 0 No armature current profile.
 - Note: Blocks 14, 15 and 16 are not required but should be entered as zeros on the product code.
 - 1 Armature current profile required.
 - Note: Blocks 14, 15 and 16 are required to complete the current profile specification.

BLOCK 142 Digits identifying the motor speed at armature profile break 1.For example: 50% - Code 50
Code 65 - 65%The digits in this block represent the percentage of motor top
speed at the first (break 1) armature current profile point. Add
leading zeros as necessary.

- Note: Block 14 is not required if Block 13 = 0 but should be entered as zeros on the product code.
- BLOCK 15 2 Digits identifying the motor armature current at armature profile break 2.

The digits in this block represent the percentage of full load armature current at the second (break 2) armature current profile point. To form the code from the numbers, round to the nearest whole number with leading zeros added where necessary.

For example: 49% - Code 49 Code 59 - 59%

- Note: Block 15 is not required if Block 13 = 0 but should be entered as zeros on the product code.
- BLOCK 16 2 Digits identifying the motor speed at armature profile break 2.

The digits in this block represent the percentage of motor top speed at the second (break 2) armature current profile point. To form the code from the numbers, round to the nearest whole number with leading zeros added where necessary.

For example: 60% - Code 60 Code 90 - 90%

Note: Block 16 is not required if Block 13 = 0 but should be entered as zeros on the product code.

- <u>BLOCK 17</u> 2 Digits identifying special options (hardware) 00 No special options
 - 01 to 99 Documented special options
- BLOCK 18 3 Digits identifying special options (software).
 - 000 The Basic Block Diagram
 - 001 002 003 004 005 006 007 008 009 010 to 999 Documented Special options

PRODUCT CODE

<u>4 BASIC INSTALLATION AND WIRING INSTRUCTIONS</u>

4.1 INSTALLATION

The 590 series motor speed controllers are designed as components which are to be fitted with other control equipment in a suitable enclosure. The control units are all designed to mount directly onto a flat surface. They should be fastened by means of bolts or screws through the fixing points at each corner. These points are in the form of keyholes and slots to simplify fastening or removal.

Please see the relevant installation drawings in this manual for overall dimensions and positions of fixing holes and to identify size of holes and fixings.

Note:- The fixing centres of 590 series controllers are designed to allow use of 100mm grid fixing.

4.2 VENTILATION AND COOLING

In normal operation the drive unit needs to dissipate heat and must, therefore, be mounted to permit the free flow of cool air vertically through the circuit board area, over the fuses and across the heat sink area at the back.

The normal maximum ambient operating temperatures are:-

Naturally ventilated unit: 45°C (113°F) Fan-force cooled units: 35°C (95°F)

For operation above these limits derating of the controller may be necessary, refer to the electrical specification

within this manual or the engineering department of SSD. Care should be taken to ensure that the mounting surface is also cool and that any heat generated by adjacent equipment is not transmitted to the drive unit.

As a general rule allow about (150mm) 6" of clear space above and below the drive for free air flow.

4.3 BASIC WIRING INSTRUCTIONS

The following set of instructions is a description of the wiring requirements of a 590 series controller configured in the General Purpose mode for operation as a basic speed controller. The complexity of connection when configured in any other mode for specific drive applications, precludes the inclusion of diagrams showing all wiring options. Special options are usually part of the engineering of a customer specific system and connection diagrams of these controllers form part of the information provided for the system.

Information showing the connections required to provide a basic speed control system when using a 590 series controller are given in diagram HB059771.

- 1. Power cables must have a minimum rating of 1.1 x full load current. (1.25 x FLC when required to comply with UL requirements).
- 2. Control wiring must have a minimum cross-sectioned area of 0.75mm2(square millimetre).
- 3. All incoming main ac power supply connections must be protected with High Speed semiconductor fuses. The rating of these fuses being as shown below:-

Product Code	BS88	Type Fuse	DIN Type Fuse		Thyristor A ² t
Block 2	Fuse Rating	Part Number	Fuse Rating	Part Number	@ 125°C Junction Temperature
0010 to 0350 0351 to 0700 0701 to 1100 1101 to 1500 1501 to 2700 2701 to 4500 4501 to 7200	35A 75A 110A 150A 300A 	CH110353 CH120753 CH120114 CH120154 CH130035	40A 80A 160A 200A 550A 700A 800A	CH570044 CH570084 CH580164 CH580025 CH590554 CH590075 CH590085	$\begin{array}{r} 800 \text{ A}^2 t\\ 8,000 \text{ A}^2 t\\ 8,000 \text{ A}^2 t\\ 15,000 \text{ A}^2 t\\ 125,000 \text{ A}^2 t\\ 320,000 \text{ A}^2 t\\ 500,000 \text{ A}^2 t\end{array}$

- 4. Where a system is being designed to comply with the United States National Electrical Code an overload relay should be fitted in the 3-phase supply to provide motor overload protection.
- 5. A substantial ground or earth connection should be made to the earth terminal of the drive.

6. A 3 phase contactor should be connected in the main ac power supply connections with a rating suitable for the controller concerned. The contactor does not switch current and is primarily for isolation and sequencing of the power bridge. The main contactor must be energised directly from the controller by connecting the coil to terminals D5 (Line) and D6 (Neutral). No additional series contacts or switches are permitted since they will interfere with the sequencing of the controller and cause unreliability and possible failure.

Notes

- 1. If the 3-phase contactor has a coil with an inrush greater than 3 Amps a slave relay must be used to drive the contactor coil.
 - 2. The contactor and slave relay (if required) must have coil voltages compatible with the controller auxiliary supply voltage.
 - 3. A dc contactor can be used but the sequencing must be adjusted to accommodate its use, an auxiliary normally open volt-free contact of the contactor must be connected in series with the "enable" input C5 to disable the drive until after the contactor is closed.
- 7. A 3 phase ac line reactor should be fitted in series with the incoming main 3 phase ac power supply. (SSD stock a series of reactors suitable for this duty mechanically designed to connect directly to the controller ac supply terminals.) The reactor should be connected between the controller and the ac contactor for optimum protection and safety.
- 8. The auxiliary or control supply (single phase 50/60Hz) should be connected to terminals D8 (Line) and D7 (Neutral) with suitable external fuse protection. The steady state current absorbed by the controller is nominal, the external fuse is determined chiefly by considering the contactor holding VA and the controller cooling fans.
 - Notes 1. Check that the auxiliary supply transformer tapping on the power board is connected to the voltage used within the system.
 - 2. The auxiliary supply must be connected directly to the incoming supply, no series switches or contacts are permitted without consultation with SSD Engineering Department.
- 9. Connect the motor field (-) to terminal D3 and field (+) to terminal D4. If the motor has no field connections, a permanent magnet motor, or if the field is derived externally, it will be necessary to override the field failure circuit. This is achieved by operation of the MMI interface in the set-up parameters menu, alarms inhibit sub-section. If the controller is correctly specified by means of the product code, the external field option will be provided and the field failure alarm overridden automatically at power-up.
- 10. If an external field supply is required to the controller for application reasons this supply should be connected to terminals D1 and D2. The magnitude of this voltage is determined by the desired field voltage and the connection of the rectifier block. (For more information on this subject see terminal block descriptions.) The supply must be protected externally with suitable fuses. If uncontrolled field rectifier is used the phasing and polarity of the external field supply is not important, however, when using a controlled regulator the phasing of the incoming supply is important. The supply must always be derived from the Red and Yellow phases of the main power supply with Red phase connected to terminal D1 and Yellow phase to terminal D2.
 - Note:- It is important that connection of the controller and the external field supply is consistent when using an externally supplied field regulator. To ensure correct operation Red phase and Yellow phase are required to be those phases connected to terminals L1 and L2 respectively of the main power connections.

It is relatively simple to change the controller from an external to an internal field type. The red wire on the FE terminal adjacent to D1 must be moved to the RED phase internal terminal and the yellow wire on the FE terminal adjacent to D2 must be moved to the YELLOW phase internal terminal.

Functional changes such as field rectifier to field regulator cannot easily be performed in the field, it is better to ensure that the correct product is ordered by means of the product code.

- 11. The main ac power is connected to bus bar terminals L1, L2 and L3, there is no specific phase connection to these three terminals as the controller is phase rotation independent. The connections must be made via the correct high speed semiconductor fuses, the main contactor and the ac line reactor.
- 12. The motor armature should be connected to bus bar terminals A+ and A-. If a dc contactor is used the poles should be interposed between the controller terminals and the motor terminals.
 - Note:- When the controller is operating in a regenerating mode for extended periods acting as a load generator for another machine it is advisable to fit additional protection in the armature circuit. A dc fuse or a high speed circuit breaker will provide this protection, if in doubt consult the SSD Engineering Department.

13. For normal operation the speed demand signal is connected to the "Setpoint Ramp Input" terminal A4. This input is scaled so that:-

> +10v input = maximum forward speed demand (+100 %) -10v input = maximum reverse speed demand (-100 %)

The speed demand signal can be generated by connecting the two ends of an external 10K potentiometer to the +10v reference terminal B3 and -10v reference terminal B4, the wiper of the potentiometer being connected to the "setpoint ramp input" as the speed reference.

For non-reversing applications and 2 quadrant controller (591, 593 etc.) the speed demand only needs to operate between 0 and +10 volts, the anti-clockwise end of the potentiometer should then be connected to signal ground terminal A1.

Two other terminals are provided as speed setpoint inputs terminals A2 and A3, terminal A2 "speed setpoint No. 1" is a direct speed demand by-passing the "setpoint ramp generator", and should be used if direct control is required. Terminal A3 is a dual function terminal either "speed setpoint No. 2" or "current demand" as selected by mode switch control "current demand isolate" terminal C8. As a speed setpoint it can be used in the same way as terminal A2.

- 14. The controller has the capability of operating with three forms of feedback:
 - i) Analogue dc tachogenerator.
 - ii) SSD MICROTACH/ Encoder.
 - iii) Armature Voltage feedback.

Product Code block 7 shows the form of feedback for which the controller is supplied.

If an analogue tachogenerator is required this should be connected with its negative terminal connected to terminal B1 and its positive terminal connected to terminal B2. It is important that this signal cable is a screened twisted pair cable throughout its entire length. The screen should be grounded or earthed only at the controller end, any other grounding arrangement may cause problems.

An SSD MICROTACH uses an additional board, the MICROTACH option module to provide connections. This board fits onto the main control board and has two types of connection, a four-way conventional terminal block to provide power to the MICROTACH and a fibre optic receiver to accept the speed feedback. The power supply to the MICROTACH should be taken from terminal G2 + 24v dc, and terminal G3 power ground. The fibre optic "cable" requires a special connector for termination of the cable, these connectors are available from SSD as is the fibre optic cable. Two connectors are stocked one completely black, the other black with a red insert, the black is used at the receiver end the red at the transmitter end. This arrangement is to aid with the identification of incoming and outgoing signals in multiple connection systems.

If the controller is supplied for use with Armature Voltage feedback no external connections are required, all connections are made within the controller.

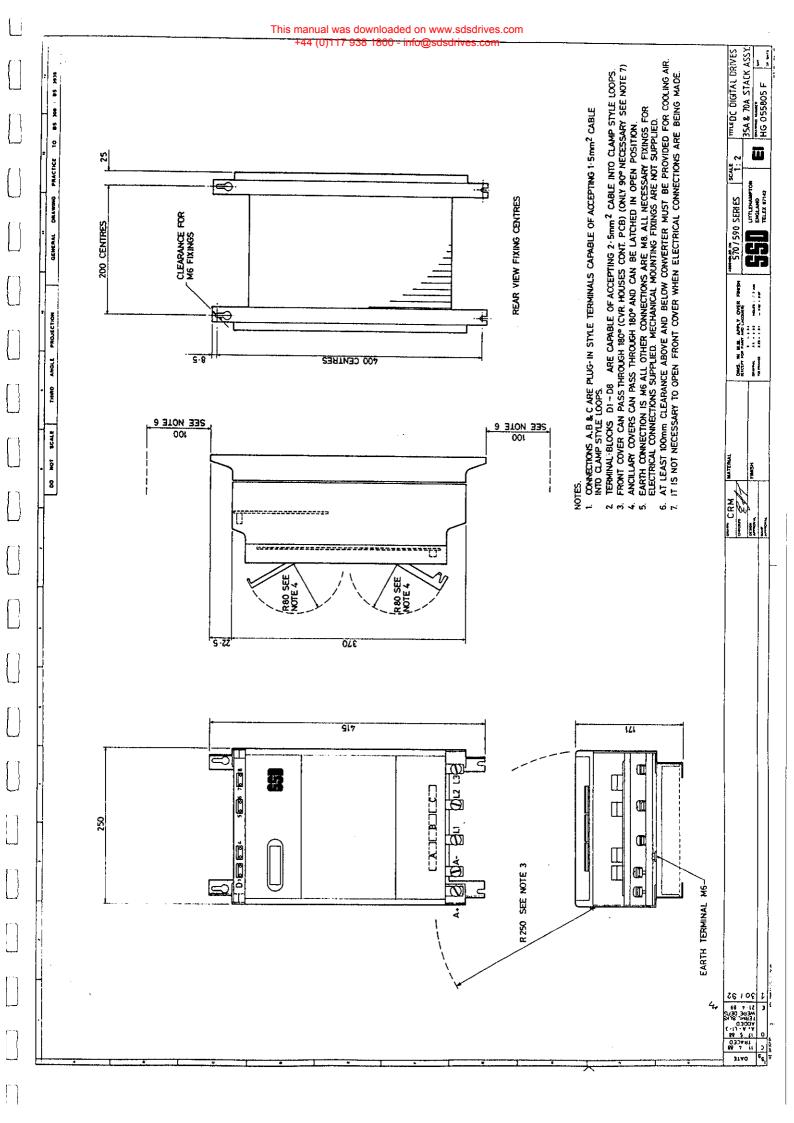
- 15. If the motor is fitted with over-temperature sensing devices such as thermo-stats, microtherms or PTC thermistors these should be connected between terminals C1 and C2. If more than one temperature sensing device is fitted they should be connected in series, if none are fitted terminals C1 and C2 must be linked to allow the drive to run. Thermistors must have a working resistance of 200 Ohms or less rising to 2000 Ohms at over-temperature.
- 16. The Main Current Limit is adjustable by means of the "Main Current Limit" Parameter [Tag 15] within the Primary Set-up parameters of the MMI. For normal operation the Main Current Limit terminal A6 should be connected to the +10v reference terminal B3, this allows the Main Current Limit Parameter to adjust the current limit between 0 and 200% full load current. If external control of the main current limit is required a 10K potentiometer connected between +10v B3 and signal ground B1 with the wiper to A6 gives 0 to 200% of Full Load Current provided the "Main Current Limit Parameter" is set to 200%.
- 17. The Enable terminal C5 must be connected to +24v terminal C9 in order to allow the drive to run. The enable input is useful to inhibit the drive without opening the main contactor to give a rapid repeat inch for example or for use with a dc contactor. However, it is not an entirely safe mode of operation as the drive dc output is only reduced to zero, if the equipment controlled by the drive is to be serviced then this method should be avoided and the drive disabled by opening the main contactor.
- 18. The basic run/start sequence of the controller is provided by terminal C3 "Start/Run" although other safeguards for extra protection are provided by "program stop" terminal B8 and "coast stop" terminal B9. Assuming that the program stop and coast stop terminals are held true then a single contact connected between terminal C9 "+24v" and C3 "start/run" when closed will cause the controller to energise the "Main Contactor" and, provided the Enable terminal C5 is also true, "Run" the associated dc motor.

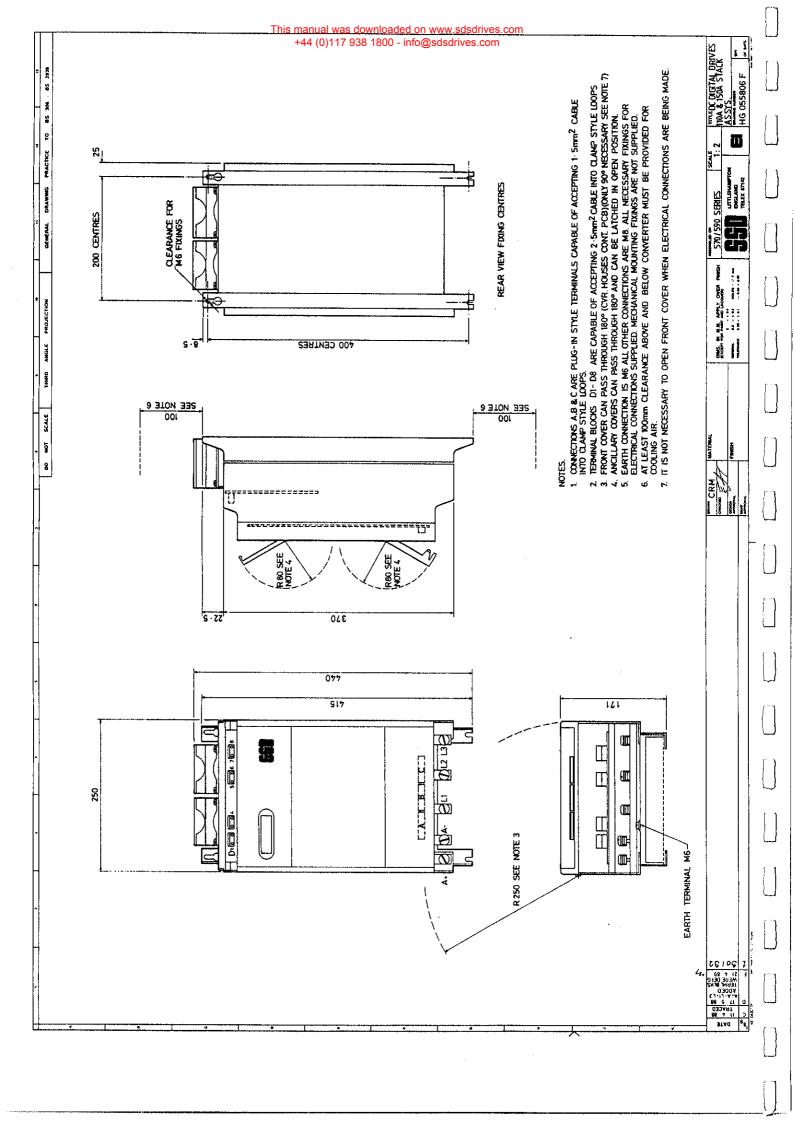
590 Manual

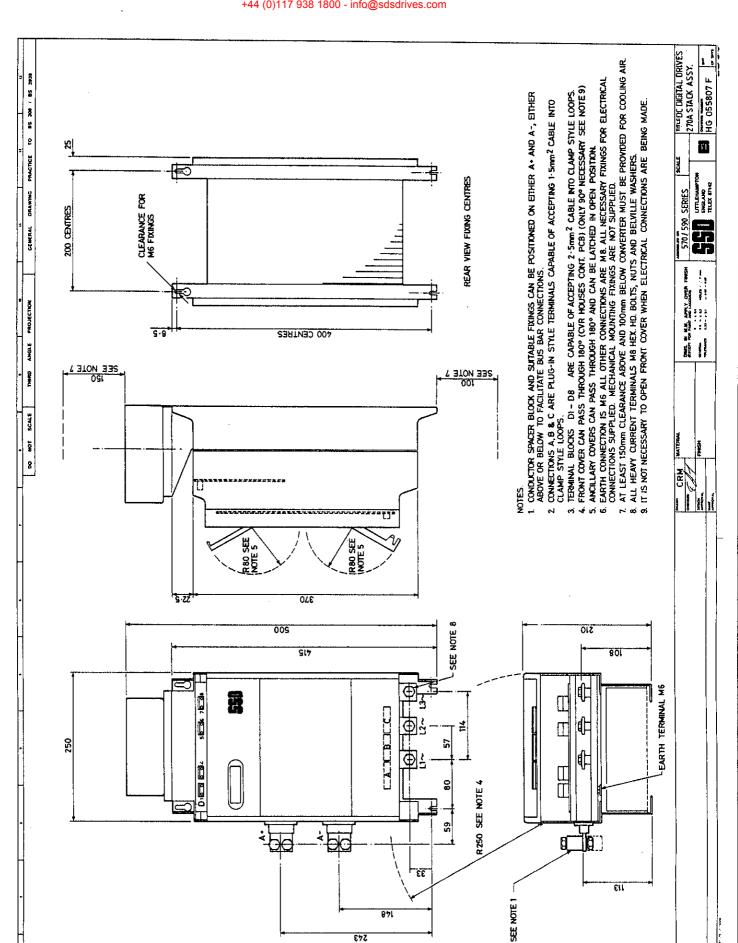
When the single contact to "Start/Run" terminal C3 is opened the controller will decelerate the motor to zero speed at a rate determined by the "stop time" setting and the "current limit" setting. The overall time "stop limit" provides protection to invoke coast stop if either "stop rate" or "current limit" fails to produce the required action within the stop limit" period.

Additional terminals B8 "program stop" and B9 "coast stop" provide extra facilities for the control of the drive.

Terminal B9 "Coast Stop" must be held at +24v to allow closure of the main contactor, the connection provides the power supply to allow the electronics to operate the auxiliary relay and hence the main contactor.

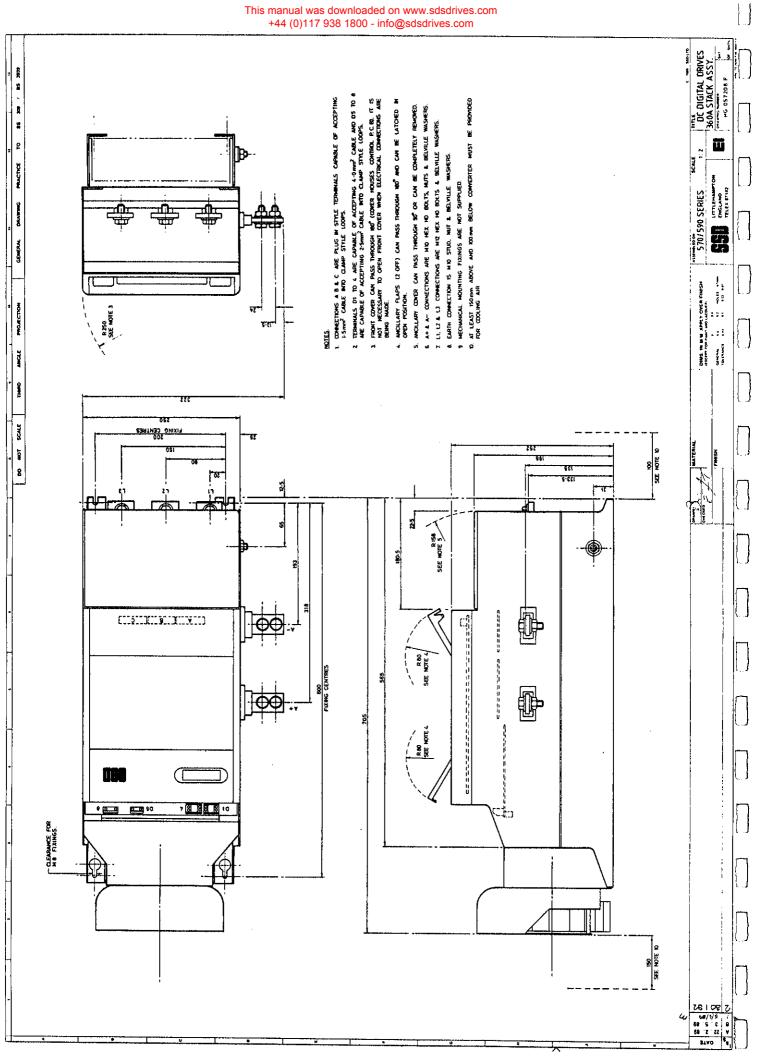

Terminal B9 "coast stop" should be connected to C9 "+24v" via a normally open contact of an "emergency" stop relay. The emergency stop relay should not be part of the normal sequencing of the system, which is implemented via the START/RUN contacts, but is a relay which can be operated in exceptional circumstances where human safety is of paramount importance.

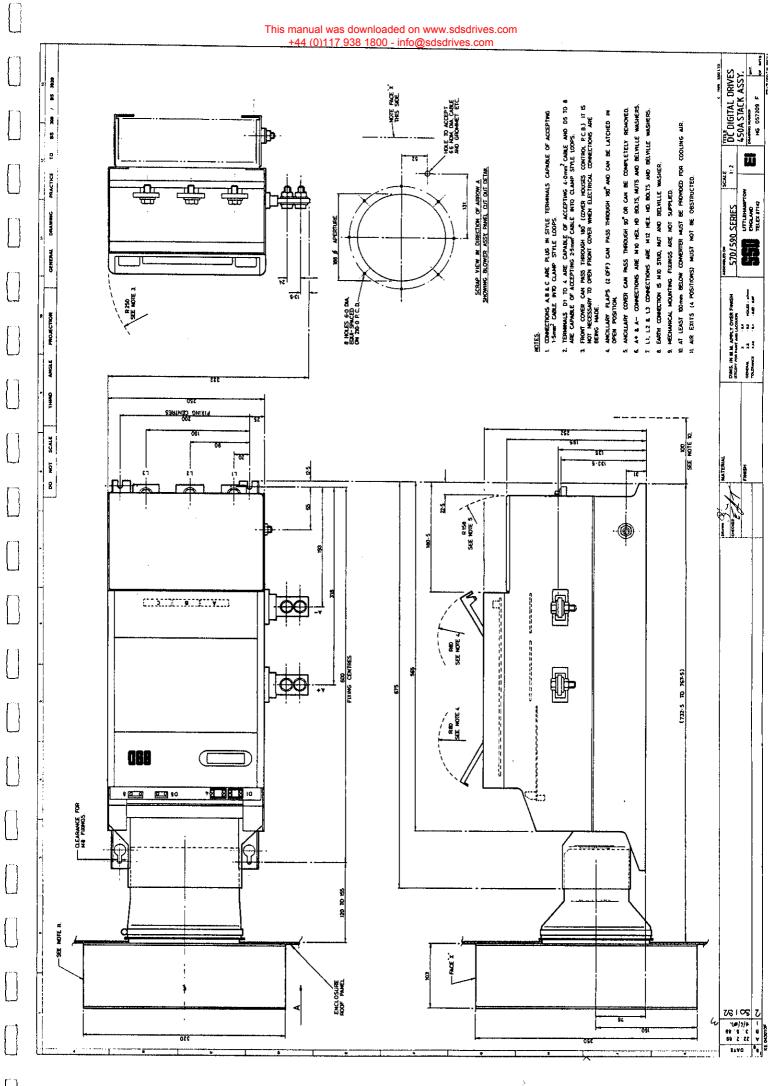

Terminal B8 "program stop" provides a facility for regenerative braking on a 4 Quadrant drive such as the 590, 592, etc.


If the "+24v" is removed from B8 while the drive is controlling the motor under "run" conditions, the controller will cause the motor to decelerate rapidly to rest at a rate determined by the "program stop" parameters. If the signal is re-applied to B8, the motor remains stationary until a new start/run command is applied to C3.

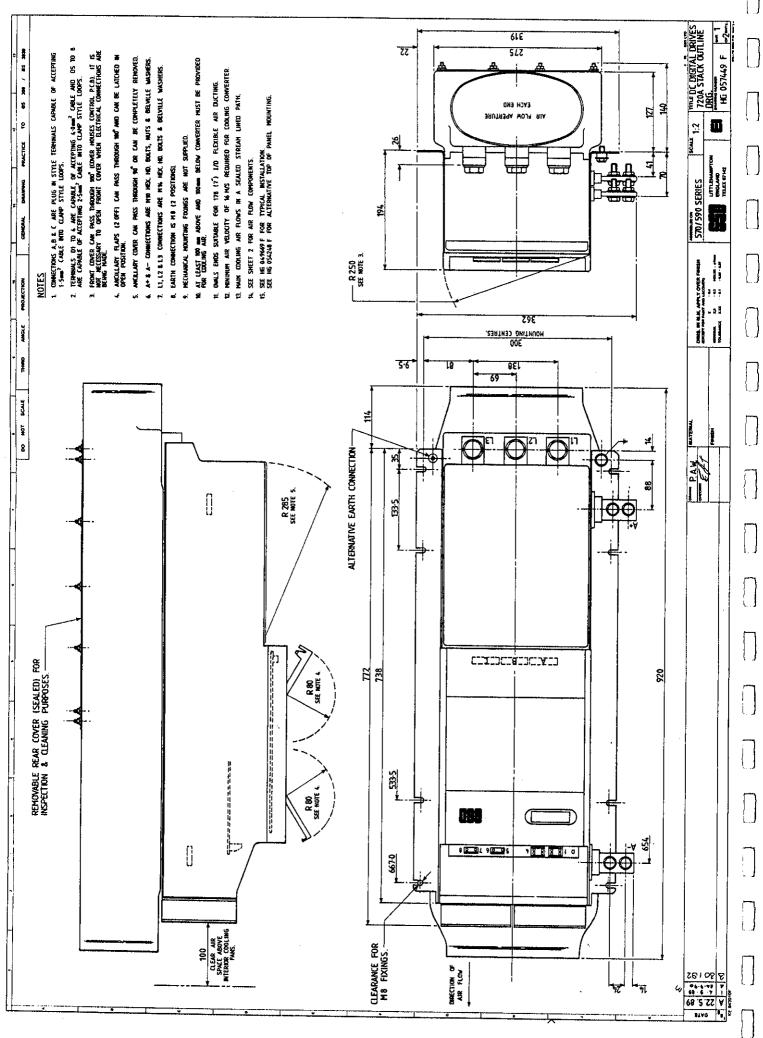
4.4 NOTES ON WIRING

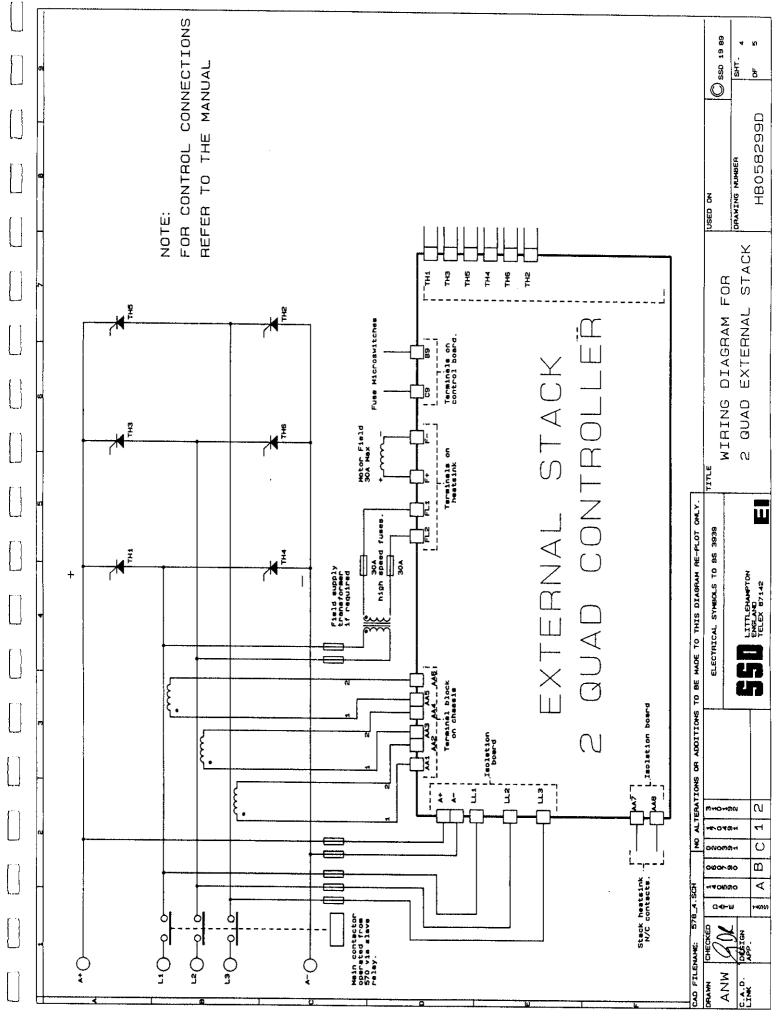
- 1. Indicator lamps, annunciators, etc., for "Drive On" condition should be switched by an auxiliary contactor of the main contactor, not by the controller auxiliary relay.
- 2. All connections made to terminal blocks A, B and C must be isolated signal voltages.
- 3. To avoid damaging the drive NEVER carry out high voltage resistance or dielectric strength tests without first completely disconnecting the drive from the circuit being tested.
- 4. If in doubt about the connection of the dc motor to the controller check with SSD Engineering Department.



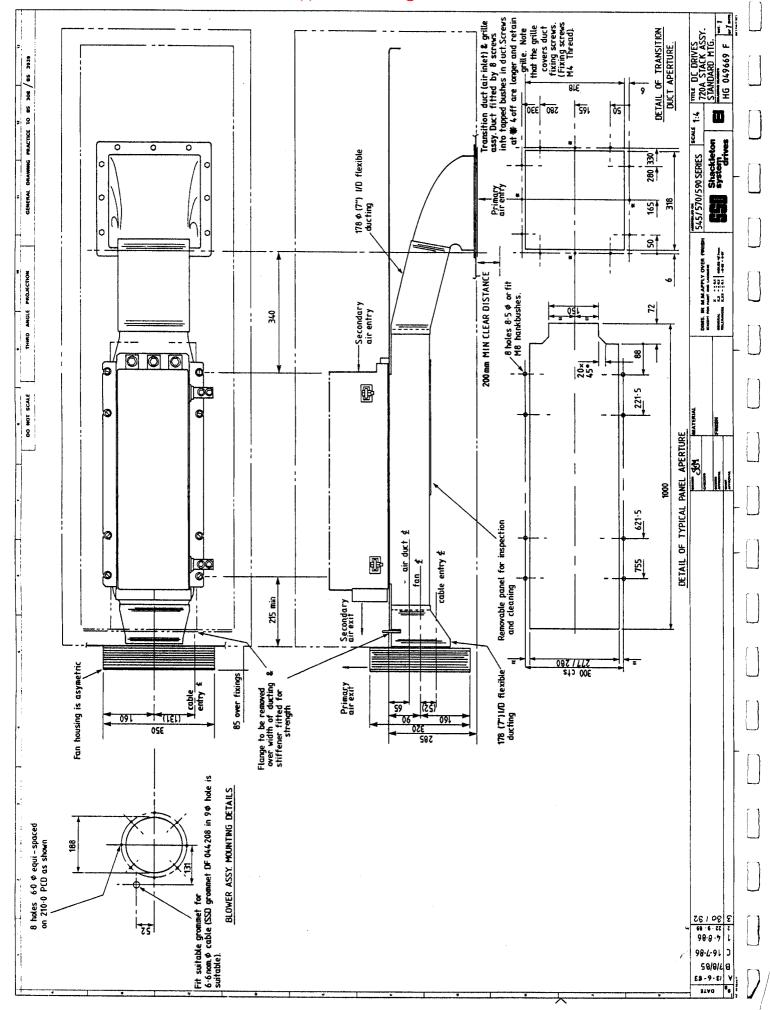


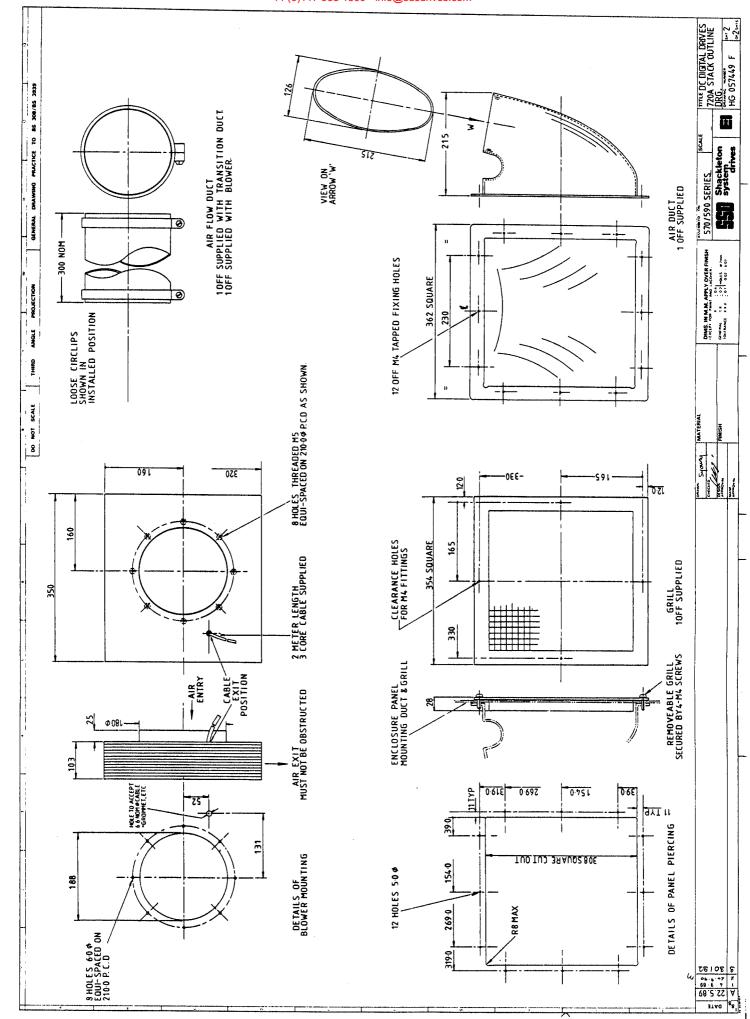
DATE DATE DATE DATE DEFL

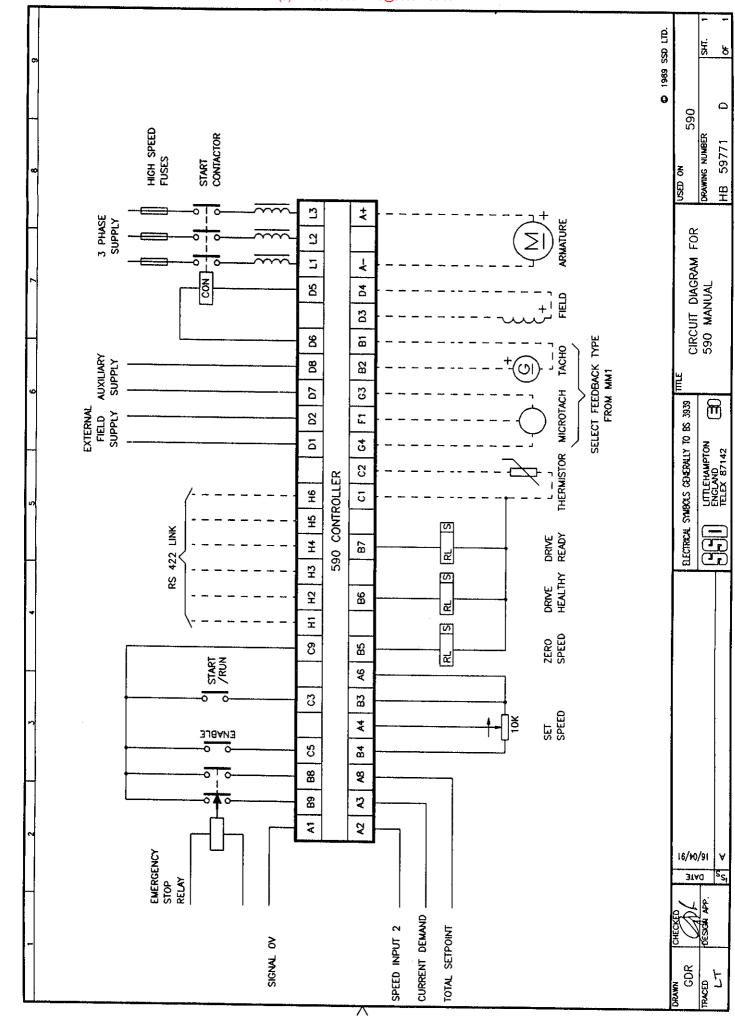

This manual was downloaded on www.sdsdrives.com +44 (0)117 938 1800 - info@sdsdrives.com



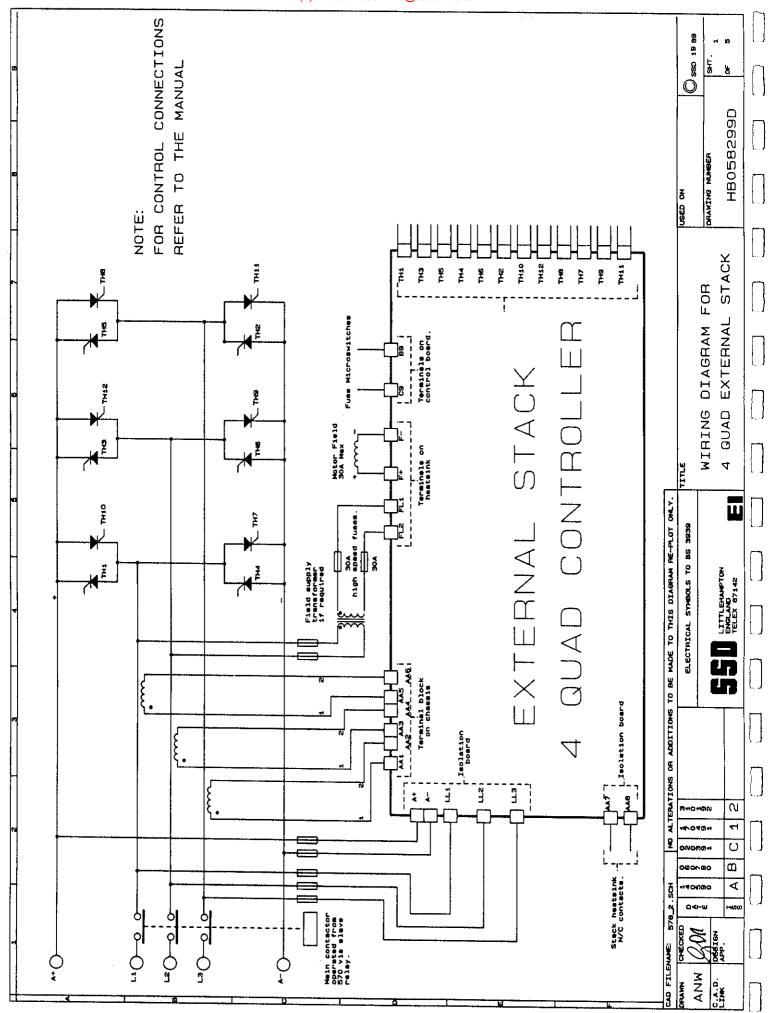
This manual was downloaded on www.sdsdrives.com




This manual was downloaded on www.sdsdrives.com



[]}



r

{

ł

Π

5 TERMINAL DESCRIPTIONS

5.1 CONTROL BOARD

Terminal blocks A, B, and C are located on the control board each block being a 9 way plug-in connector. In addition to terminal blocks A, B and C, terminal blocks G and H provide connections when the two option modules are fitted on the control board.

TERMINAL BLOCK A

<u>Terminal</u>	Description	Function	Signal Level Co	nfigurable
A1	Ov(Signal Ground)	Zero Volt reference		N/A
A2	Analogue Input No.1	Speed Setpoint.	+10v = Full Speed Setpoint Forward. -10v = Full Speed Setpoint Reverse.	No
A3	Analogue Input No.2	Auxiliary Speed Setpoint or Current Demand. The Function of this input is determined by Digital Input No. 3 at terminal C8. C8 open circuit = Speed Setpoint C8 at +24v = Current Demand	 +10v = Full Speed Setpoint Forward. -10v = Full Speed Setpoint Reverse in speed setpoint mode. +10v = 100% positive current demand. -10v = 100% reverse current demand. 	Yes
A4	Analogue Input No.3	Ramped Speed Setpoint	+10v = Full Speed Setpoint. -10v = Full Speed Setpoint Reverse.	Yes
A5	Analogue Input No.4	Auxiliary Current Clamp Negative.	+10v = 200% positive current demand -10v = 200\% reverse current clamp.	Yes
A6	Analogue Input No.5	Main Current Limit or Auxiliary Current Clamp Positive. The function of Analogue Inputs 4 and 5 is determined by Digital Input No.1 on terminal C6. C6 open circuit. Analogue Input No.5 = Main Current Limit. C6 at +24v. Analogue Input No.5 = Auxiliary Current Clamp Positive Analogue Input No.4 = Auxiliary Current Clamp Negative.	+10v = 200% main current limit mode. +10v = 200% positive current clamp. -10v = 200% negative current demand	No
A7	Analogue Output No.1	Speed Feedback output.	+10v = Full Speed Feedback Forward. -10v = Full Speed Feedback Reverse.	Yes
A8	Analogue Output No.2	Total Speed Setpoint.	+10v = Full Speed Setpoint Forward. -10v = Full Speed Setpoint Reverse.	Yes
A9	Current Meter Output	Buffered Armature Current Feedback. The output can be selected as either Bipolar or Unipolar by the Armature I parameter.	Bipolar Mode +10v = 200% output current Forward. -10v = 200% output current Reverse. Unipolar Mode +10v = 200% output current.	No

Analogue Input/Output Specifications.

Input/Output Resolution	10 Bit plus sign i.e. 10mV. 0.1% of Full Scale Deflection.
Input Impedance	25K ohm with a 1 millisecond filter.
Maximum Input Sample Rate	5 milliseconds (typically) Analogue I/P4, 5, 6 15msec.
Input Overload Capability	10% i.e. Maximum Recognisable voltage 11v. Tach Input B2 only.
Output Capacity	10v at 5mA. Short Circuit Protected.
Output Update Rate	5 milliseconds.
Output Overdrive Capability	10% i.e. Maximum Output Voltage 11v.

TERMINAL BLOCK B

<u>Terminal</u>	Description	Function	Signal Level	<u>Configurable</u>
B1	Ov(Signal Ground)	Zero Volt reference for analogue signals only specifically the analogue tachogenerator.		N/A
B2	Analogue Tachogenerator Input	Tachogenerator Feedback	+200v dc Maximum at Full Speed Feedback Forward. -200v dc Maximum at Full Speed Feedback Reverse.	No
	This input is into	ended solely for the connection of a	n analogue do tachogenerator. Term	inale

This input is intended solely for the connection of an analogue dc tachogenerator. Terminals B1 and B2 should be used for the two connections of the tachogenerator. A dc voltage of up to 200v dc maximum can be applied directly to B2 with respect to B1. Tachogenerator calibration is achieved by resistors R6 and R7 on the plug-in calibration board, the resistors being selected using the formula:-

R6 + R7 = (Full Speed Tachogenerator Volts - 10) K ohms.

The minimum tachogenerator voltage is 10v with a calibration resistor of zero ohms. If the tachogenerator voltage exceeds 200 volts an external potentiometer chain is necessary to reduce the voltage to an acceptable level.

Fine calibration of the tachogenerator feedback is performed in software and is adjusted using the "Analog Tach Cal" Parameter (See Set-up procedure).

For forward motor rotation corresponding to a positive setpoint signal, the tachogenerator feedback voltage at terminal B2 must be positive with respect to OV (signal).

Note:

Block 8 of the product code specifies the speed feedback source. Only when block 8 is coded as '1' is terminal B2 used for speed feedback.

B 3	+10v Reference	Positive Reference Supply	+10v at 10mA short circuit protected.	N/A
B4	-10v Reference	Negative Reference Supply	-10v at 10mA short circuit protected.	N/A
В5	Digital Output No.1	Zero Speed Detected. The operating level of this output can be modified by the standstill zero threshold parameter to give the desired accuracy of operation.	+24v at zero speed.	Yes
B6	Digital Output No.2	Drive Healthy (Drive Operational) This output is true when the controller is Healthy.	+24v when Healthy	Yes

B7	Digital Output No.3	Drive Ready. This output is true when th controller is ready to funct	+24v when Ready te ion.	Yes		
Digital O	utput Definition					
	Digital Output	t Voltage +:	24V dc.			
	Digital Output	t Current +:	+50mA maximum Source.			
	Output Update	e Rate 5	5 milliseconds.			
	Output Impeda	ance 47	47ohms, short circuit protection not provided.			
These outputs are active high and source current from the terminal to the load. Thus the load mus connected between the output and the power ground terminal C1. A free-wheel diode is included in output to protect the output transistor when switching inductive loads such as relays.						
B8	Program Stop	Controlled Stop Input.	+24v drive run	No		

B8	Program Stop	Controlled Stop Input. When the Program Stop input is held at +24v, the drive operates as required by the inputs. When the Program Stop is open circuit or at zero volts, the controller provides a controlled or program stop as defined by the Program Stop parameters. (See Note 1)	+24v drive run Ov (o/c) drive stop Threshold + 12v	No
B9	Coast Stop	Uncontrolled Stop Input. When the Coast Stop input is at +24v, the controller operates normally. When the Coast Stop is at zero volts or open circuit, the main contactor is open and the drive no longer operates. The motor coasts to rest.	+24v drive run 0v (o/c) drive coasts to rest. Threshold +12v	No
C1	0v (Power Ground)	Control and Relay Ground		N/A
C2	Thermistor/ Microtherm	Motor overtemperature protection element input.		No

It is good practice to protect DC motors against sustained thermal overloads by fitting temperature sensitive resistors or switches in the field and interpole windings of the machine. These devices have a low resistance (typically 200 Ohms) up to a reference temperature (125°C). Above this temperature, their resistance rises rapidly to greater than 2000 Ohms. Motor overtemperature sensors should be connected in series between terminals C1 and C2. A motor overtemperature alarm will be indicated if the external resistance between C1 and C2 exceeds 1.8k Ohms ± 200 Ohms.

Terminals C1 and C2 must be linked if overtemperature sensors are not used.

C3	Start/Run	Start/Run Input When an input is applied to this	+24v =	= True/Run	No
		terminal the controller will operate provided there are no	0v ;	= False/Stop	
		alarms, program stop/coast stop signals are true and the controller is enabled. When the input is removed the controller will perform a regenerative stop to zero speed. (See Note 1)	Thresho	old + 12v	

Note 1: A regenerative stop can only be achieved by a 4 quad regenerative controller, the 2 Quad non-regenerative controller will coast to zero speed.

	C4	Reserved				No
	C5	Enable	The enable input provides a means of electronically inhibiting controller operation. If the enable	+24v	= True/Enable	No
				+0v	= False/Inhibit	
				Thresh	old + 12v	
	C6	Digital Input No.1	Selection Control No. 1 This input alters the configuration	+24v	= True/Bipolar Clamp	Yes
		140.1	of the current clamps, with no	+0v	= False/Unipolar Clamp	
			connection i.e. false Analogue I/P 5 provides a single current limit. When true Analogue \pm I/P 5 is the positive current clamp Analogue I/P 4 is the negative current clamp.	Thresh	old + 12v	
	C7	Digital Input	Ramp Hold	+24v	= True/Hold	Yes
		No.2	If the input is held true the Ramp Generator output is frozen at that value irrespective of the Ramped Setpoint Input. When false the Ramp Output follows the Ramped Setpoint Input with a delay determined by the Acceleration and Deceleration Ramp time paramaters.	+0v	= False/Ramp	
				Thresh	old + 12v	
	C8	Digital Input No.3	Current Demand Isolate. This input alters the drive	+24v	= True/Current	Yes
			operation from Speed Control to Current Control. When digital	+0v	= False/Speed	
			input No.3 is true, analogue input No.2 provides the current demand and the speed loop is disconnected. When false the speed loop is in control and analogue input No.2 is an auxiliary speed setpoint.	Thresh	old + 12v	
	C9		Maximum output current: 50mA.			N/A
		This is a regulate stop and stop ter	ed +24 volt supply which can be us minals.	ed to ac	tivate the Digital inputs, program	
Dig	ital Inpa	it Definition				
Nor	ninal In	put Voltage	- 24v DC			
		r , 0.000				

-	24v DC
-	30v DC
-	$47 \mathrm{k}\Omega$
-	5 milliseconds
-	12v Typical
<	бч
>	18v
	·

•

CONTROL BOARD TERMINAL SUMMARY

Signal Ground	0v	A1
Speed Setpoint	Analogue Input 1	A2
Aux. Speed Setpoint/Current Demand	Analogue Input 2	A3
Ramped Speed Setpoint	Analogue Input 3	A4
Aux. Current Clamp -ve	Analogue Input 4	A5
Main Current Limit/Aux. Current Clamp +ve	Analogue Input 5	A6
Buffered Speed Feedback	Analogue Output 1	A7
Total Speed Setpoint/Current Demand	Analogue Output 2	A8
Buffered Current Output	Current Meter Output	A9

Signal Ground	Ov	B1
Tach Input	DC Tachogenerator Input	B2
External +10v Reference	+10v DC Reference	B3
External -10v Reference	-10v DC Reference	B4
Zero Speed Output	Digital Output 1	B5
Drive Healthy	Digital Output 2	B6
Drive Ready	Digital Output 3	B7
Program Stop	Program Stop Input	B8
Coast Stop	Coast Stop Input	B9

Power Ground	Ov	C1
Microtherm	Thermistor Input	C2
Start/Run Control	Start/Run Input	C3
Reserved		C4
Enable Control	Enable Input	C5
Selection Control	Digital Input 1	C6
Ramp Hold	Digital Input 2	C7
Current Demand Isolate	Digital Input 3	C8
	+24v Supply	C9

TERMINAL BLOCK G

Gl	Not Used	
G2	External +24v dc Supply	Alternate external +24v Microtach power supply source input connection terminal.
G3	+24v dc Microtach Supply	This is a regulated +24v supply which can be used to power the microtach. The maximum load of the 24v supply is 250mA when supplying terminals C9, G2 and any digital outputs. If this load is likely to be exceeded an external 24v supply should be connected to G2 to supplement the internal supply.
G4	Microtach Power Supply Ground	Power supply return terminal.
F1	Microtach Input	Fibre Optic Receiver Input Socket.
<u>TERM</u>	<u>IINAL BLOCK H *</u>	
H1 H2	$ \begin{array}{c} XMT - \\ XMT + \end{array} $	Serial Communications Port P1 Transmit Terminals. Balanced Line Driver outputs compatible with RS422 signal levels.
H3 H4	Ov Isolated }	Serial Communication Port Signal ground with galvanic isolation from controller signal ground or power ground. Signal Screen ground point

 H5
 RCV

 H6
 RCV +

Signal Screen ground point
Note the signal screen must also be grounded at the host.
Serial Communications Port P1 Receive Terminals
Balance Line Receiver input compatible with RS422 signal levels.

NOTE: Where more than 8 serial communications option boards are interconnected on one system, the line termination resistor fitted to the option board causes excessive loading on the system. This resistor should be removed on boards daisy chained in the serial wiring not those at the beginning or end of the system. Refer to SSD Engineering Department if in doubt.

5.2 POWER BOARD

TERM D1 D2	UNAL BLOC FE FE	<u>x D</u> }	Terminal Block D is located on the power board. External AC input to field bridge.
			Required AC Input Voltage = 1.11 x Nominal DC Output. The field regulator will control the field current provided that the Nominal DC Output voltage exceeds the field voltage by at least 10%. i.e. $V_{AC} = 1.11 \times V_{DC}$ and $V_{DC} = 1.1 \times V_{FELD}$ therefore $V_{AC} = 1.22 \times V_{FELD}$ The external AC supply must be protected with high speed fuses to protect the field regulator or the rectifier bridge. For controllers with 10A field capability 10A fuses should be used, those with 20A field capability 20A fuses. Note:- When using the an external ac input it is important to have the correct phase relationship on the terminals. The supply must be derived from L1 (Red) and L2 (Yellow) phases directly or indirectly through a transformer. L1 must be connected to D1 and L2 to D2.

Caution:- The voltage applied to the external ac terminals must not exceed the level specified by the AC Power Supply Voltage Product Code Block 3.

D3 D4	Field Output - Field Output +	}	Motor Field Connections. The DC output voltage at these terminals will depend upon the AC supply voltage and the mode of field control.
			voltage and the mode of field control.

TERMINAL DESCRIPTIONS

Voltage Control

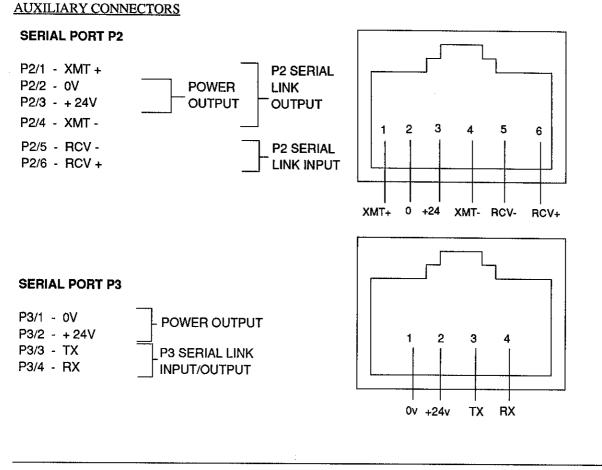
The output voltage will be determined by the ratio parameter in the field variables. The relationship between the dc output voltage and ac input voltage is determined by the equation:-

$$Vdc = \frac{Vratio \times Vac}{100}$$

The default value of Vratio is 90% hence the dc output voltage will be the same as for a full wave rectifier.

The ratio can be adjusted over a range of 10 to 1 hence the voltage can be adjusted to suit the dc motor rating plate.

Current Control


The working output voltage will be determined by the calibrated output current and the load impedance and will vary as the motor field warms up.

If the current calibration resistors are incorrectly selected or the field output terminals are open circuit the voltage will rise to a maximum value determined by the equation:-Vdc = $0.9 \times Vac$.

D5 Main Contactor Coil(L) } The terminal is the switched output from the contactor control relay and is derived from the auxiliary supply at terminal D8. The output is internally fused at 3A hence contactor coils having a high pick-up current must be operated via a slave relay.

> This terminal is internally connected to the auxiliary supply neutral and provides a convenient connection point for the contactor coil neutral connection.

> These terminals are the mains input connections for control supply transformer, contactor control relay supply and cooling fan supply (when force cooled). The voltage applied to these terminals is Product Code dependant, ensure that the input voltage tapping coincides with both the applied voltage and the Product Code. Failure to do so may cause the supply fuse to fail and may cause permanent damage.

590 Manual

D6

D7

D8

Main Contactor

Auxiliary Supply (N)

Auxiliary Supply (L)

Coil (N)

TERMINAL DESCRIPTIONS

P2

P3

CONTROL BOARD OPTION MODULE TERMINAL ALLOCATION

Microtach Option Module

Not Used	G1
External +24VDC Supply	G2
+24V DC Supply	G3
0 volt power	G4
Fibre Optic Input Socket	F1

RS422 Serial Link Option Module

XMT -	H1
XMT +	H2
0V Isolated	Н3
OV Shield Screen	H4
RCV -	H5
RCV +	H6

POWER BOARD TERMINAL ALLOCATION

External field supply - V AC	D1
External field supply - V AC	D2
Field Output - V DC	D3
Field Output + V DC	D4
Main contactor coil - V AC	D5
Main contactor coil - V AC	D6
Auxiliary supply Neutral 110/240	D7
Auxiliary supply Line 110/240	D8

POWER TERMINALS

Three phase supply 110 - 500 VAC	LI
Three phase supply 110 - 500 VAC	L2
Three phase supply 110 - 500 VAC	L3
Armature connection positive	A+
Armature connection negative	A-

6 HARDWARE OVERVIEW

6.1 CONTROL CIRCUITS

6.1.1 Microcontroller

A single 16 bit Microcontroller performs the majority of the control functions with additional hardware either providing support to the Microcontroller or providing interfacing and scaling to the input/output data.

The functions performed by the Microcontroller are as follows:-

- a) Analog to Digital conversion;
- b) Current Loop;
- c) Speed Loop;
- d) Field Loops;
- e) Sequencing;
- f) Alarm recognition and first fault indication;
- g) MMI display and keypad;
- h) LED Diagnostics;
- i) P3 Port;
- j) P1 and P2 Ports via intelligent peripheral;
- k) Thyristor firing algorithms
- 1) Digital to Analogue output via 10/12 bit D/A convertor.

The support circuitry falls into five categories:-

- a) Microcontroller Data and Program storage
- b) Microcontroller Peripherals
- c) Signal scaling and conditioning
- d) Power Supplies
- e) Coding

6.1.2 Program and Data Storage

The Microcontroller has three forms of memory in which to carry information:-

- a) 64K bytes of EPROM
- b) 16K bytes of RAM
- c) 8K bytes of EEPROM

The **EPROM** is concerned primarily with program storage although a large area is concerned with messages and text for the MMI display and a list of default values for the parameters.

The RAM is used for working data such as instantaneous values of speed and current as well as pointers and vectors used in the general housekeeping of the Microcontroller. The working parameters and configuration data is stored in the RAM and used from this location during normal operation. The working parameters are loaded from the EEPROM during normal power-up sequencing and the save operation puts any altered data into the EEPROM for non-volatile storage. The default values stored in the EPROM can be loaded into the RAM by holding the 4 MMI keys depressed during power-up. This operation is normally carried out at the factory but can be performed on site in exceptional circumstances.

The **EEPROM** as previously indicated provides permanent storage for the customers parameters and configuration data. Unlike the RAM the EEPROM is non-volatile, i.e. it retains data after power down, the EPROM is also non-volatile but cannot be written under normal circumstances.

590 Manual

6.1.3 Peripherals

There are three peripheral integrated circuits which perform complex functions on behalf of the Microcontroller. They are:-

- a) the firing gate array
- b) the LCD display driver
- c) the UART or Universal Aysychronous Receiver and Transmitter

The firing gate array is a custom integrated circuit which determines which Thyristors are to be firing in master or slave stack according to instructions from the Microcontroller. The firing gate array also controls the field bridge.

The LCD display driver as the name implies receives data from the Microcontroller and displays this information. The driver will maintain the data on display until given new information, the Microcontroller is thus relieved of the complex task of multiplexing the LCD segments.

The UART controls the flow of data down the two primary scrial data lines ports P1 and P2. The Microcontroller instructs the UART to send data at a specific data rate and the UART converts the data to serial link format adding any additional information as required by the protocol. Similarly incoming data is converted from serial to parallel data and the Microcontroller flagged that data has arrived.

The UART also has a number of Parallel Port pins which are connected to incoming digital data such as the heatsink overtemperature trip, the Microcontroller reads the data from the UART much as it would read a memory location.

6.1.4 Signal Scaling and Conditioning

All the incoming signals analogue or digital are scaled to we do the operating limits of the Microcontroller by means of external circuitry. In the case of digital inputs the input signal levels are within strict limits and the scaling can be fixed. Similarly analogue inputs such as speed setpoint are within known and controlled limits and have fixed scaling. There are, however, a number of signals which can vary over a wide range, these signals are:-

- a) Armature current
- b) Analog tacho (Speed Feedback)
- c) Field current
- d) Armature voltage
- e) Field voltage

These parameters are scaled by means of external calibration resistors which are calculated according to the use of the controller.

The equations required to calculate the calibration resistors is given in the Setting-Up Instructions at Section 8.

Output signals digital or analogue are buffered and scaled by external circuitry to normalised levels, which are compatible with these for the digital and analogue input signals.

6.1.5 Power Supplies

The power supplies for the controller are generated from the single phase auxiliary supply via the control transformer. A bridge rectifier and filter capacitor feed an unregulated 40 volt DC supply to a high efficiency switched mode pre-regulator. This generates 24 volts DC which is used for Thyristor stack firing, digital I/O and other power functions. The logic supply is stabilised to +5 volts using a high efficiency switched mode regulator. Stabilised +/-15 volt supplies are generated for the analogue hardware. All power supplies are short circuit protected, and the 40 volt and 5 volt supplies are protected against overvoltage using a crowbar. The control transformer is provided with two primary taps which allow auxiliary supply voltages of 110 VAC and 240 VAC. The auxiliary supply fuse FS3 on the power supply PCB protects the control transformer primary. This fuse is also cleared should the crowbar operate, which can happen if the wrong auxiliary supply voltage tap is selected.

6.1.6 Coding

Thyristor stack synchronisation signals are generated for the main processor by a module mounted on the power board. This coding module provides isolation from the supply using opto-isolators, and gives excellent integrity when operating the controller on poor quality power sources. The module also provides signals which indicate the supply phase rotation, and that the main supply is present.

Three options of the coding module are designed to cover a voltage range of 110 Vac to 660 Vac, 50 to 60Hz. Normal supply voltage variations of + 10% at the high voltage end, -10% at the low voltage end can be catered for by the circuits as well as 10% variation in frequency. These three options operate over the ranges 110 Vac to 240 Vac, 220 Vac to 500 Vac, 500 Vac to 660 Vac with 220/500 Vac being the standard option.

The mains supply present function sends an alarm to the microprocessor if the incoming three phase supply fails, or if a phase loss occurs. This phase loss indication must be treated with some caution since it is entirely feasible that external equipment, connected to the three phase input to the controller, could reproduce the missing phase. Under these circumstances, the phase loss detector would not indicate an alarm condition. Both phase rotation and supply present detectors use opto-isolators to isolate the incoming supply from the signal supplies.

6.1.3 Peripherals

There are three peripheral integrated circuits which perform complex functions on behalf of the Microcontroller. They are:-

- a) the firing gate arrayb) the LCD display driver
- c) the UART or Universal Aysychronous Receiver and Transmitter

The firing gate array is a custom integrated circuit which determines which Thyristors are to be firing in master or slave stack according to instructions from the Microcontroller. The firing gate array also controls the field bridge.

The LCD display driver as the name implies receives data from the Microcontroller and displays this information. The driver will maintain the data on display until given new information, the Microcontroller is thus relieved of the complex task of multiplexing the LCD segments.

The UART controls the flow of data down the two primary serial data lines ports P1 and P2. The Microcontroller instructs the UART to send data at a specific data rate and the UART converts the data to serial link format adding any additional information as required by the protocol. Similarly incoming data is converted from serial to parallel data and the Microcontroller flagged that data has arrived.

The UART also has a number of Parallel Port pins which are connected to incoming digital data such as the heatsink overtemperature trip, the Microcontroller reads the data from the UART much as it would read a memory location.

6.1.4 Signal Scaling and Conditioning

All the incoming signals analogue or digital are scaled to would the operating limits of the Microcontroller by means of external circuitry. In the case of digital inputs the input signal levels are within strict limits and the scaling can be fixed. Similarly analogue inputs such as speed setpoint are within known and controlled limits and have fixed scaling. There are, however, a number of signals which can vary over a wide range, these signals are:-

- a) Armature current
- b) Analog tacho (Speed Feedback)
- c) Field current
- d) Armature voltage
- e) Field voltage

These parameters are scaled by means of external calibration resistors which are calculated according to the use of the controller.

The equations required to calculate the calibration resistors is given in the Setting-Up Instructions at Section 8.

Output signals digital or analogue are buffered and scaled by external circuitry to normalised levels, which are compatible with these for the digital and analogue input signals.

6.1.5 Power Supplies

The power supplies for the controller are generated from the single phase auxiliary supply via the control transformer. A bridge rectifier and filter capacitor feed an unregulated 40 volt DC supply to a high efficiency switched mode pre-regulator. This generates 24 volts DC which is used for Thyristor stack firing, digital I/O and other power functions. The logic supply is stabilised to +5 volts using a high efficiency switched mode regulator. Stabilised +/-15 volt supplies are generated for the analogue hardware. All power supplies are short circuit protected, and the 40 volt and 5 volt supplies are protected against overvoltage using a crowbar. The control transformer is provided with two primary taps which allow auxiliary supply voltages of 110 VAC and 240 VAC. The auxiliary supply fuse FS3 on the power supply PCB protects the control transformer primary. This fuse is also cleared should the crowbar operate, which can happen if the wrong auxiliary supply voltage tap is selected.

6.1.6 Coding

Thyristor stack synchronisation signals are generated for the main processor by a module mounted on the power board. This coding module provides isolation from the supply using opto-isolators, and gives excellent integrity when operating the controller on poor quality power sources. The module also provides signals which indicate the supply phase rotation, and that the main supply is present.

Three options of the coding module are designed to cover a voltage range of 110 Vac to 660 Vac, 50 to 60Hz. Normal supply voltage variations of + 10% at the high voltage end, -10% at the low voltage end can be catered for by the circuits as well as 10% variation in frequency. These three options operate over the ranges 110 Vac to 240 Vac, 220 Vac to 500 Vac, 500 Vac to 660 Vac with 220/500 Vac being the standard option.

The mains supply present function sends an alarm to the microprocessor if the incoming three phase supply fails, or if a phase loss occurs. This phase loss indication must be treated with some caution since it is entirely feasible that external equipment, connected to the three phase input to the controller, could reproduce the missing phase. Under these circumstances, the phase loss detector would not indicate an alarm condition. Both phase rotation and supply present detectors use opto-isolators to isolate the incoming supply from the signal supplies.

6.2 POWER CIRCUITS

6.2.1 Armature Bridge

The armature is controlled by either

- a) 4 Quad six pulse thyristor bridge which is fully regenerative
- b) 2 Quad six pulse thyristor bridge which non-regenerative.

In the case of the 2 Quad thyristor bridge, six thyristors are provided in 3 modules thus forming a full wave bridge. Each thyristor is controlled independently from the firing gate array with pulse transformers for voltage isolation. The bridge has two forms of suppression, a RC network to limit the rate of rise of volts across the thyristor thus reducing the possibility of false triggering, and a VDR or voltage dependent resistor to keep the maximum applied voltage within the limits of the thyristor rating.

The 4 Quad thyristor bridge has an additional bridge in reverse parallel of the same configuration as the 2 Quad stack to provide the regenerative capability and the possibility of reverse operation. No additional suppression is provided since thyristors in the two bridges are in reverse parallel.

The armature bridge is not fitted with any protection by semi-conductor fuses, these should be provided externally. The bridge is electronically protected from overload conditions by the control circuits but the fuses should be provided for back-up protection.

6.2.2 Field Bridge

The field is normally produced by a half controlled thyristor regulator, which can control the field by two methods. Either a simple phase angle control where the output is effectively a variable voltage source or by closed loop current control. The phase angle control gives a simple mechanism by which the field regulator can be made to operate like a field rectifier. By fixing the firing angle a full wave, half wave or 3-phase half wave bridge arrangement can be simulated.

Current control allows the field current to be precisely regulated thus preventing variation in current with mains voltage variation. Current control must be used if the controller is also intended to provide an extended speed operating range via field weakening.

Voltage control is a simple method for producing field control but suffers from the possibility of overfluxing the motor thus preventing operation of the motor at maximum speed.

6.2.3 Feedback

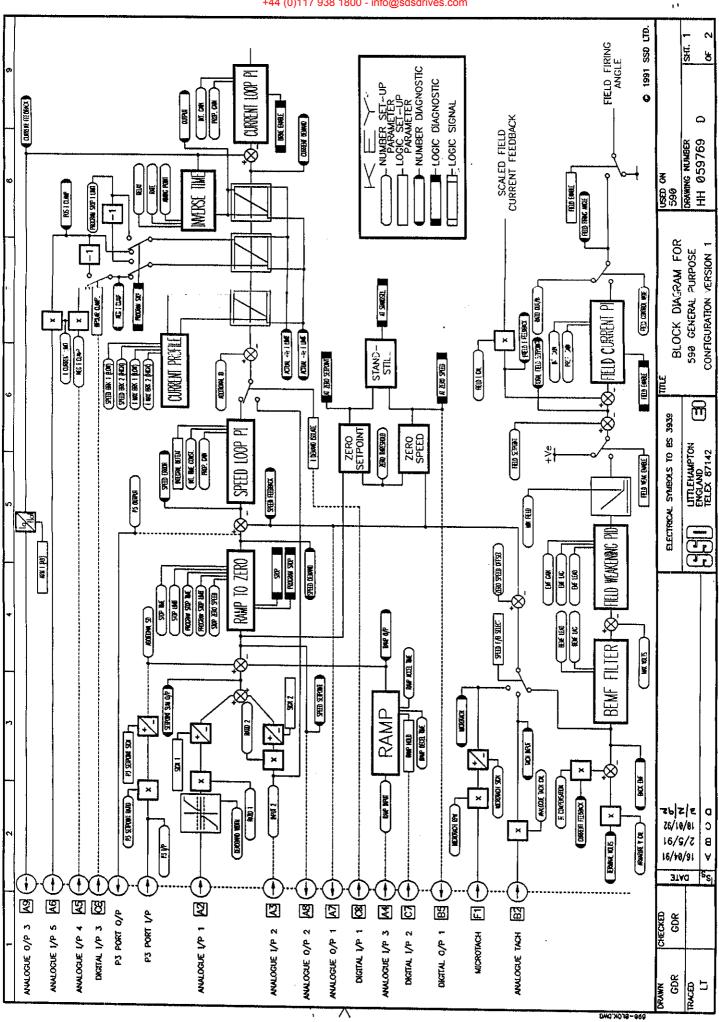
The controller gives closed loop control of all the parameters required by the motor. Since these parameters are controlled feedback must be provided to the controller. The primary form of feedback is armature current, this is achieved by means of 3 ac current transformers monitoring the phase currents to the thyristor bridge. The ac feedback is rectified and fitted with a selected burden to give the desired current level.

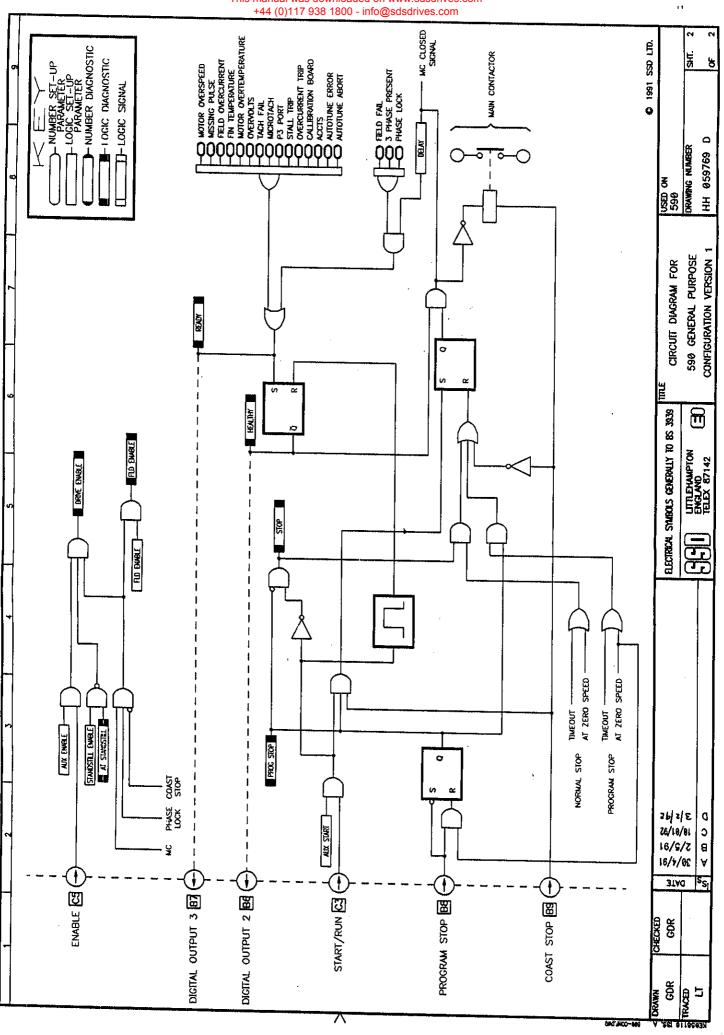
Speed feedback is provided by either:-

- a) a dc tachogenerator
 - b) a microtach/encoder
 - c) armature voltage

The dc tachogenerator, microtach and encoder are external items fitted to the dc machine, within the controller there is a mechanism to scale the speed feedback. Armature voltage feedback used for speed control and field weakening is an internal circuit which provides an isolated signal via a precision high impedance potential divider chain into standard amplifier circuitry.

The field also has two feedback paths current and volts, current is again a current transformer monitoring ac supply current and volts a similar potential divider chain to the armature voltage sensing.


All forms of feedback have internal calibration resistors mounted on the calibration board to allow scaling of these signals to the required user levels.


6.2.4 Auxiliary Supply and Main Contactor

The controller power supplies are derived from an ac auxiliary supply input which generates low voltage supplies via a transformer rectifier arrangement. The auxiliary supply must be powered at all times when control action is required, no additional switches should be fitted between incoming ac and the auxiliary supply terminals.

The controller needs a power contactor, dc or ac, in series with the main power path to ensure correct power-up sequencing. This contactor is directly initiated by the Microcontroller via an isolating relay, the isolating relay drives the contactor coil with the same voltage as that of the auxiliary supply.

No additional contacts should be connected in series with the contactor coil as this may cause controller sequencing problems. If a dc contactor is used, an ancillary contact of the dc contactor should be connected into the "enable" input to ensure correct sequencing.

44

Ņ

8 BASIC SETTING UP AND OPERATING INSTRUCTIONS

A. INSTALLATION CHECK LIST:

BEFORE ATTEMPTING TO CONNECT POWER

CAREFULLY CHECK:

5.

- 1. Auxiliary power supply voltage is correct.
- 2. Main power supply voltage is correct.
- 3. Armature voltage and current ratings.
- 4. Field option, voltage and current rating.
 - All external wiring circuits -Power connections Control connections Motor connections
 - Note:- Completely disconnect the controller before point to point checking with a buzzer or when checking insulation resistance with a megger.
- 6. For damage to equipment or wiring.
- 7. For loose ends, clippings, drilling chips, etc., lodged in the drive or electrical equipment.
- 8. Inspect the motor, in particular the commutator for any extraneous matter. If an air line is available it is recommended to blow over the commutator. Check that the brushes are properly seated and that the brush spring tensions are adequate. If possible check that the motor (and vent fan motor when fitted) can be turned freely by hand.

ENSURE:

- 1. That rotation of the machinery in either direction will not cause a hazard.
- 2. That nobody else is working on another part of the equipment that can be affected by powering up.
- 3. That other equipment will not be adversely affected by powering up.

B. PREPARATION:

- 1. Prevent the Main 3-phase power supply and single phase auxiliary supply from becoming connected to the drive by removing the main external HRC fuses.
- 2. Disconnect the load from the motor shaft is possible.
- 3. If there is any doubt about the integrity of a particular installation, insert a high wattage resistor i.e. fire elements, in series with the motor armature.
- 4. Check all calibration resistors on the small plug-in card which is accessible under the front cover. Note:-These resistors should be good quality 2% metal film type.

Tachogenerator Calibration: (If Analogue Tachogenerator Used)

(a) For full speed tacho voltages of up to 200 volts:

R6 + R7 = (tacho volts - 10)K Ohms

(b) For full speed tacho voltages greater than 200 volts, an external resistor, value RE, is required in series with the tachogenerator connection to terminal B2.

When maximum values of R6 and R7 are fitted giving 200v on terminal B2 i.e. R6 = 120K, R7 = 68K.

Then RE is given by the formula:-

 $RE = \frac{(tacho volts - 200)}{5} KOhms$

The power dissipation of this resistor is given by the formula

 $RE = (tacho volts - 200) \times 5 milliwatts$

Armature Voltage Calibration

Two series resistors R8 and R9 provide the armature voltage scaling, the total sum of the resistors is of greater importance than the individual values.

$$R8 + R9 = \frac{(Armature Volts-100)}{10} KOhms$$

The minimum allowable armature voltage is 100V with R8 and R9 having no (zero) resistance.

Note:- It is essential that the Armature Voltage calibration is scaled for the motor at rated volts even if armature voltage feedback is not used. The speed feedback alarm is based upon speed feedback and armature voltage signals.

Microtach/Encoder Feedback

Microtach feedback uses no scaling components, the required maximum motor speed is programmed into the controller from the information in the product code. The preset value of the maximum motor speed can be checked a later stage in the procedure before running the motor but with the auxiliary supply connected.

The scaling does however assume a 1000 lines per revolution encoder if an alternate part is supplied the appropriate set-up parameter (ENCODER LINES) must be amended.

Armature Current Calibration

The armature current is scaled by the parallel resistor network consisting of resistors R1, R2, R3, R4 and R5. The combined value RA of all these resistors is calculated as follows:-

$$RA = \frac{2200}{(Full Load Current - 1)}Ohms$$

The combined value of the resistors fitted can be verified using the formula.

$$\frac{1}{RA} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + \frac{1}{R4} + \frac{1}{R5}$$

Values are selected in the factory on the basis of the best combination of standard resistor values.

Note:- The armature current calibration resistors should not be changed to increase the current above the factory set value without consulting the SSD Engineering Department.

Field Current Calibration

Accurate field current calibration is not necessary unless field control mode is selected to "current".

The field current is scaled by the parallel resistor network consisting of Resistors R10 and R11. The combined value of these resistors is calculated as follows:-

$$RF = \frac{3000}{Full Field Current}Ohms$$

The combined value of the parallel resistors R10 and R11 can be verified from the formula:-

$$RF = \frac{R10 \times R11}{R10 + R11}$$

When the field is in voltage control mode the resistor value is selected on the basis of a notional field current of 200mA.

Hence
$$RF = \frac{3000}{0.2} = 15 KOhms$$

Note:-

$$RF = \frac{4000}{Full Field Current}Ohms$$

SETTING UP & OPERATING

C. CHECKING THE DRIVE AND SETTING UP

- 1. When all the preceding steps are completed the auxiliary power supply can be connected to terminals D7 and D8, (but do not connect the Main 3-phase power supply at this stage). Immediately check that the correct voltage appears between D7 and D8.
- 2. Now check:
 - i) The LCD display shows the text:-SSD 590 DC DRIVE ISS X.XX

Where X.XX is a numeric code representing the software issue and release.

- ii) The LED indicators, these are the 6 LEDS under the RHS of the top covers, the HEALTH, OVERCURRENT TRIP, PROGRAM STOP and STOP LED's should be on.
- iii) Using a digital voltmeter

(a) +24v rail at terminal C9

- (b) +10v rail at terminal B3
- (c) -10v rail at terminal B4
- 3. Using the MMI move into the DIAGNOSTICS menu, press 'M' once to move straight into the DIAGNOSTICS menu, press 'M' again for the first diagnostic point.

Normally the setpoint ramp input at terminal A4 is the speed reference source. Using the down arrow move through to "Analogue I/P 3" A4. Use 'M' again to display the value of the analogue I/P.

Vary setpoint potentiometer and observe input voltage.

Additional Setpoint Inputs may also appear at:-

- i) Analogue I/P 2 A3.
- ii) Analogue I/P 1 A2.
- Note:- The sum of all the setpoints appears at diagnostic point "Speed Setpoint" and is also output at terminal A8.
- 4. Check External Current Clamp settings.
 - a) If using single external clamp, C6 low.
 Check "Analogue I/P 5 A6" is at +10v or adjustable up to +10v.
 - b) If using dual external clamps, C6 high.
 Check "Analogue I/P 5 A6" is at +10v or adjustable up to +10v and "Analogue I/P 4 A5" is at -10v or adjustable up to -10v.
- 5. If possible check the speed feedback by rotating the shaft manually in the forward direction.
 - a) Analogue Tachogenerator: The voltage at B2 (Diagnostic "Tacho Input") should go positive.
 - b) MICROTACH/Encoder:- The diagnostic point "Microtach" should give a positive reading.

Also check "Speed Feedback" diagnostic for a positive reading.

If there is no feedback signal from the "Microtach" verify that all 3 LED's are illuminated. If one or more of these LED's is extinguished check that 24v is applied to the Microtach and all ancillary products and that the fibre optic transmission length is not exceeded.

6. Exit from the "Diagnostic" Menu of the MMI and move over to "Set-up Parameters" menu.

Scroll through the Set-up Parameters noting the preset values and adjusting those which are obviously incorrect. One parameter the "Current Limit" in the current loop sub menu should be set to zero. Special attention should be paid to the feedback source selection.

PARAMETER SAVE

At this point any parameters which have been altered must be written into the Non Volatile memory of the microprocessor. For details of the Parameter Save operation see Section 10.12.

590 Manual

CHECK LIST

SOFTWARE RELEASE 1

SUB MENU	DISPLAY	SOFTWARE SETTINGS(1)	FACTORY SETTING(2)	FINAL SETTING(3)
RAMPS	RAMP ACCEL TIME RAMP DECEL TIME MINIMUM SPEED RAMP HOLD RAMP MODE RAMP INPUT	10.0 SECS 10.0 SECS 0.00% * LINEAR		
AUX I/O ④	AUX START AUX ENABLE DIGOUT 1 DIGOUT 2 DIGOUT 3 ANOUT 1 ANOUT 2	ON OFF OFF OFF 0,00% 0,00%		
FIELD CONTROL	FIELD ENABLE FLD CTRL MODE IS	ENABLED VOLTAGE CONTROL	• <u> </u>	
FIELD VOLTAGE VARS	RATIO OUT/IN	90.0%		
FIELD CURRENT VARIABLES	SETPOINT PROP. GAIN INT. GAIN	100.00% 0.10 1.28		
FIELD WEAK VARIABLES	FLD. WEAK ENABLE EMF LEAD EMF LAG EMF GAIN MIN FLD CURRENT MAX VOLTS BEMF FBK LEAD BEMF FBK LAG	DISABLED 2.00 40.00 0.30 10.00% 100.00% 100 100		
FIELD QUENCH CONTROLS	FLD QUENCH DELAY FLD QUENCH MODE	10.0 SECS QUENCH		
CURRENT PROFILE	SPEED BRK 1 SPEED BRK 2 IMAX BRK 1 IMAX BRK 2	100.0% 100.0% 200.0% 200.0%		
INVERSE TIME	OUTPUT DELAY RATE AIMING POINT	200.00% 10.0 SEC 60.0 SEC 110%		
STOP RATES	STOP TIME STOP LIMIT PROGRAM STOP TIME PROGRAM STOP LIMIT PROGRAM STOP I LIM STOP ZERO SPEED	10 SECS 60.0 SECS 0.1 SECS 60.0 SECS 100.00% 2.00%		
CALIBRATION	ARMATURE V CAL IR COMPENSATION MICROTACH RPM ANALOGUE TACH CAL ENCODER LINES ARMATURE I (A9) SPD FBK ALM LEVEL FIELD I CAL.	1.0000% 0.00% 1000 RPM 1.0000 1000 BIPOLAR 50.0% 1.0000		

Continued over/ ...

SETTING UP & OPERATING

590 Manual

This manual was downloaded on www.sdsdrives.com
+44 (0)117 938 1800 - info@sdsdrives.com

SUB MENU	DISPLAY	SOFTWARE SETTINGS[]	FACTORY SETTING ⁽²⁾	FINAL SETTING(3)
INHIBIT ALARMS	FIELD FAIL 5703 RCV ERROR STALL TRIP SPEED FBK ALARM MICROTACH ALARM	ENABLED ENABLED INHIBITED ENABLED INHIBITED		
CURRENT LOOP	CURRENT LIMIT P GAIN I GAIN AUTOTUNE FEED FORWARD DIS/CONTINUOUS ADDITIONAL DEM BIPOLAR CLAMPS REGEN MODE NEG I CLAMP IDEM ISOLATE	100.00% 45,00 3.50 OFF 2.00 12.00% 0.00% DISABLED ENABLED * DISABLED		
SPEED LOOP	PROP GAIN INT. TIME CONST. ZERO SPD. OFFSET ADDITIONAL DEM INT. DEFEAT MICROTACH SIGN SPEED FBK SELECT	20.00 1000 msec 0.00% 0.00% OFF POSITIVE ARM VOLTS FBK		
STANDSTILL	STANDSTILL LOGIC ZERO THRESHOLD	DISABLED 1.00%		
RATIOS	RATIO 1 RATIO 2 SIGN 1 SIGN 2 DEADBAND WIDTH INPUT 2	1.0000 1.0000 POSITIVE POSITIVE 0.0% *		

- 1 The software settings are a series of values carried in the 590 software which are a reasonable compromise to the final requirement. These values can be restored at any time by switching on the ancillary supply with the four MMI buttons depressed.
- 2 The factory settings are averaged settings, which allow complete testing of the equipment prior to despatch, and should reflect the calibration as required by the product code.
- 3 The final settings are those set by the user to optimise system performance.
- Auxiliary I/O are additional Input/Output Locations (Tags) which can be activated by either the Serial Communications, Reconfigured Inputs or Outputs, or the MMI. Since they can be changed via the MMI they are displayed in the Set-up Parameters Sub Menu.
- * These parameters are connected by the default configuration to terminals. If the terminals are re-configured to other locations or tags these parameters can be controlled from the serial link or the MMI and are hence in the Set-up Parameters Sub-Menu.

7. Check that the "Coast Stop" B9 and "Program Stop" B8 are true.

Apply the "Start/Run" command to C3.

The main 3 phase contactor should pull-in and remain energised.

Remove the "Start/Run" command from C3.

The main 3 phase contactor should drop-out and remain de-energised.

If the above sequence does not function remove the auxiliary power and check out start/stop sequencing and contactor wiring.

If the contactor is left energised for an extended time during this check, the controller will detect that 3-phase is not connected and switch off the contactor flagging the 3-phase alarm.

Note:- The main contactor should never be operated by any means other than the drive internal controls, nor should any additional circuitry be placed around the contactor coil circuit.

WARNING

DO NOT PROCEED FURTHER UNLESS THE STOP/START CIRCUITS AND CONTACTOR OPERATE CORRECTLY.

- 8. Turn off all power supplies to the equipment and when the whole system is totally isolated and safe re-connect the Main 3-phase power supply.
- 9. Turn on auxiliary supply.
- 10. Turn on Main 3-phase supply.
- 11. Turn the Speed Setpoints to zero so that the total setpoint Diagnostic "Speed Setpoint" is zero.
- 12. Verify that the "Current Limit" Parameter is set to zero or zero volts on "Current Clamp I/P" A6.
- 13. Initiate "Start/Run" and check that 3-phase mains is applied to L1, L2 and L3. Initiate "Enable" C5 and immediately check that the correct field voltage appears between terminals D4 and D3. Note this is high voltage DC, so proceed with caution. Do not continue if this is incorrect, switch off all supplies and re-check the product code.

If the field voltage is not correct then make the following checks:-

- 13.1 Internally supplied field.
 - a) Check that 3-phase is applied to terminals L1, L2 and L3 when main contactor closed.
 - b) Check that the 3 coding fuses are healthy.
 - c) Is the Field Regulator "Enabled" in Set-Up Parameters?.
 - d) Is it set to voltage or current control? If voltage control check "Ratio" parameter. If current control check calibration resistor.
 - e) Is the field volts maximum in current control then check field continuity.
 - Note: If the regulator is in current control mode, the field volts will initially be lower than the rated value due to a cold field.
- 13.2 Externally supplied field.
 - a) Check the voltage applied to terminals D1 and D2.
 - b) Check the phasing of voltage applied to D1 and D2. D1 must be connected directly or indirectly to the Red phase on main power terminal L1. D2 must be connected directly or indirectly to the Yellow phase on main power terminal L2.
 - c) Check Set-Up Parameters as detailed for internally supplied field.
 - d) Check that 3-phase is applied to terminals L1, L2 and L3.
- 14. Check that all Drive Condition indicators are now be on. See description of front cover indicators for explanation of LED functions. Note any external interlocks which affect the enable input C5 as this will affect the state of the RUN LED.
- 15. Note status of standstill logic if enabled, disable temporarily.

Note:- During subsequent stages be ready to STOP the drive should the motor try to overspeed.

SETTING UP & OPERATING

16. Adjust the "Speed Setpoint" Diagnostic so that Total Setpoint Voltage is about 5%, 0.5v at setpoint input. Slowly increase the "Current Limit" Parameter up to a maximum of about 20%. The motor should begin to rotate and if all connections are made correctly the motor speed should settle at about 5% of Full Speed.

If this speed is exceeded and the motor continues to accelerate a reversed connection is implied, decrease the "current limit" parameter to zero.

16.1 Analogue Tachogenerator:-

First open main contactor and switch off all supplies, then correct the connections.

- (a) If the motor is turning in the right direction reverse the tachogenerator connections only.
- (b) If the motor is turning in the wrong direction, reverse the field connections only.
- 16.2 MICROTACH/Encoder:-

Open main contactor.

- (a) If the motor is turning in the right direction, changeover the "Feedback Sign" in the "Set-up Parameters" menu.
- (b) If the motor is turning in the wrong direction switch off all supplies then reverse the field connections only.

Re-connect the supplies if disconnected and repeat the test from the beginning. If the motor still runs out of control check the tachogenerator and the continuity of the wiring. In the case of the MICROTACH there are three LED's on the MICROTACH option board, all these LED's should be on for healthy operation of the wiring and tacho. If in doubt about the operation of the tachogenerator either Analogue or MICROTACH during this test monitor terminal A7 with respect to signal ground on a meter this will show if a feedback is present.

Note:- If drive trips on speed feedback alarm with tachogenerator feedback of the correct polarity check armature voltage calibration.

Check the "Speed Feedback" source selection under Set-up Parameters this could be set incorrectly allowing the drive to run open loop.

WARNING:-

Proceed further only when this test has been satisfactorily completed.

- 17. If the drive has run satisfactorily without any need for reconnection of the field or tachogenerator but the direction of rotation is wrong. Open the main contactor, and disconnect all supplies.
 - 17.1 Analogue Tachogenerator:-

Reverse both field and tachogenerator connections.

17.2 MICROTACH/Encoder:-

Reverse the field re-establish the auxiliary supply and reverse the "feedback sign" in the Set-up Parameters menu.

WARNING:-

When changing Set-up Parameters such as the feedback polarity this change must be saved in the non-volatile memory before switching off the Auxiliary supply or the Set-up will be lost. It is therefore important at this stage when satisfactory operation has been achieved to STOP the drive and SAVE the parameters.

- 18. If the motor does not turn at all when the "current limit" is increased to 20%, check the "current feedback" diagnostic point to verify that current is flowing into the armature. If no current is flowing switch off and check the armature connections.
- 19. With the "Current Limit" set to 20% or the level required to achieve rotation. Increase the total setpoint to 10% and the motor should accelerate to this speed setting.
- 20. 4 Quadrant Drives which require reverse rotation.

Alter setpoint to -10% and check that motor runs in the reverse direction.

- 21. Adjustment of "Zero Speed Offset" parameter.
 - (a) 4 Quadrant, Non-reversing drives.

Set the Speed Setpoint Potentiometer to zero and adjust "Zero Speed Offset" parameter for minimum shaft rotation.

(b) 2 Quadrant, Non-reversing drives.

Set the Speed Setpoint Potentiometer to zero and adjust the Zero Speed Offset parameter until the shaft is just rotating then reduce level until the shaft stops.

(c) 4 Quadrant, Reversing drives.

Set the Zero Speed Offset Parameter to balance maximum speed in forward and reverse directions.

- 22. Gradually increase the speed setpoint to maximum and check the shaft speed is correct. If fine adjustment is required adjust the calibration as appropriate to the speed feedback selection.
 - (a) Analogue Tachogenerator has a 10% trim, greater changes require re-calibration of external scaling components.
 - (b) The MICROTACH/Encoder should give an absolute rotational speed for which adjustment is unnecessary however the motor speed may not be the relevant factor thus speed of rotation can be altered by simply adjusting the calibration.
 - (c) Armature Voltage feedback also has a 10% trim, again changes outside this range require re-calibration of the external scaling components.
- 23. If the drive requires field weakening to achieve top speed, run the drive up to base speed (speed control by armature voltage, constant field) and check the motor volts are correct.

Armature Voltage has a 10% trim as used in the case of armature voltage feedback, greater changes need re-calibration of the external scaling resistors.

Verify in the FIELD VARIABLES sub-menu of the SET-UP PARAMETERS that FIELD WEAKENING ENABLE is selected and that MINIMUM FIELD is set appropriately, adjust MAXIMUM armature volts to the required scaled level.

Increase speed above base speed checking that the armature volts remains constant while the field falls, gradually increase to Maximum speed monitoring armature volts at maximum speed trim speed using Analogue Tacho Calibration. Trim Minimum field setting.

- 24. For reversing drives. Check maximum reverse speed. Imbalance in reversing drives can only be corrected by adjusting the Zero Speed Offset which may be to the detriment of operation at Zero Setpoint.
- 25. Re-set the "Current Limit" parameter to the original position which was previously noted. If in doubt set the Current Limit to 110% to correspond 110% FLC. If the current limit is set to maximum 200%, and the motor runs into an overload condition, the current is automatically reduced on an inverse time characteristic from the current limit level down to 110% FLC.

Note:-

- a) If the motor is overloaded the controller will reduce the current to 110% of the current limit setting. If the motor continues to rotate it may overheat and thermal protection should be provided.
- b) If the motor is overloaded and the current provided by the controller is not enough to maintain rotation i.e. it is stalled, the controller will trip out showing "Stall Trip" alarm.

D. CONTROLLER PERFORMANCE ADJUSTMENT

When effective speed control of the motor has been achieved the performance of the controller should be optimised by the following steps.

1. Current Loop.

This can be easily adjusted by use of the Autotune function, full details of this operation is given in section 10.7 Optimum performance of the controller cannot be expected unless the Autotune function has been performed with each individual controller motor combination. A badly turned current loop may lead to high current transients and subsequently an overcurrent trip alarm.

If an oscilloscope is available, correct operation of the controller output can be monitored by observation of the current waveform. There is a group of test points under the lower terminal cover on the left hand side. The upper group of three are the test signals while the terminal below signal ground. The left most terminal is the armature current feedback signal, the signal level being 1.1v average at full rated current. At all times there should be six current pulses per mains cycle.

2. Speed Loop.

Optimum Speed Loop performance is achieved by adjusting the Speed Loop Integral and Proportional gain terms in the Set-up Parameters Menu, Speed Loop parameters.

The response to a small change in setpoint should be observed on the tachogenerator feedback and proportional and integral gain terms adjusted to give rapid change of speed feedback between the values with minimum overshoot. If the controller uses Microtach/Encoder feedback then speed response can be monitored by observing speed feedback on terminal A7 of the controller.

9 FRONT PANEL INDICATORS & MONITOR POINTS

Six LED indicators are located under the control board top cover. These allow the operational status of the drive to be monitored while the LCD display is being used for other purposes (drive setup for example).

In the normal run condition all LEDs on the drive front panel are illuminated. Any LED which is off indicates a condition which prevents operation of the controller.

Two of these LEDs are driven directly by the main processor:-

HEALTH RUN

The remaining four LEDs are driven directly by hardware:-

OVERCURRENT TRIP START CONTACTOR PROGRAM STOP STOP

1. HEALTH

- On: Drive Normal Condition
- Off: Drive Fault Condition

The Health condition depends on the status of the following sources of alarm:-

- a) Self test complete (power supply, memory, microprocessors)
- b) **Field Failure**
- c) d) 3 phase supply
- Overcurrent trip(300%)
- e) f) Motor over-temperature (thermistor/microtherm)
- Fin over-temperature (controller heatsink)
- g) h) Phase locked loop synch (45-65Hz)
- Missing current pulse
- Armature current feedback
- i) j) k) Calibration board installed
- Tach fail/speed feedback fault
- Ð Microtach fail (fibre optic feedback)
- m) Motor overspeed
- n) Field Overcurrent
- 0) Motor overvolts
- p) P3 Port
- q) Stall Trip
- NOTE:-Any fault will remove health and will automatically display the fault alarm on the diagnostic display. The drive will always be defined as healthy unless an alarm condition has occurred during a run condition (when this occurs the display will automatically identify the alarm source).

To Reset Health:

- power up or remove and re-apply auxiliary supply 1)
- or 2) re-start (stop-then start) i.e. remove the Start/Run signal C3 and re-apply

[the removal of the Start/Run Signal resets the system, applying the Start/Run Signal clears the display]

2. RUN

On: Drive in a Run condition. Drive healthy, (as indicated by the health LED). Ready (which requires a start instruction) and enabled. Indicates that the controller is in a normal run condition. The main contactor control relay is energised and the Thyristor bridge is enabled. This LED is extinguished if:-

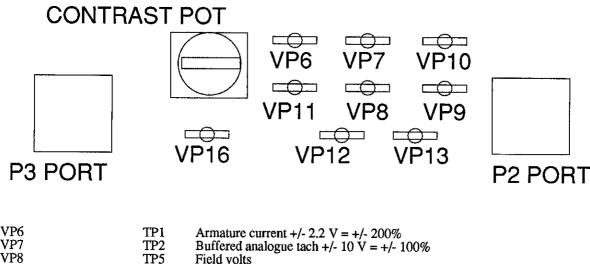
- The Thyristor bridge is disabled. a)
- The main contactor control relay is de-energised. b)
- An alarm is present. c)
- Off: Drive not enabled.

3. START CONTACTOR

- On: Start contactor closed by the application of a start instruction and the drive is healthy.
- Off: Start contactor open

4. PROGRAM STOP

- Program stop mode not employed. Indicates that +24 volts is applied to terminal B8. On:
- The program stop line is open and the program stop is carried out until main contactor drop out Off: occurs.


5. OVER CURRENT TRIP

- On: Armature current normal.
- Armature current has exceeded 300% full load. In this condition the over current alarm is set, Off: the drive becomes "unhealthy" and the start contactor will be automatically tripped. The display will also show an alarm condition. The entire system must be checked thoroughly for the cause of failure. The drive can then be reset and restarted.

6. COAST STOP

- On: Stop not active. Indicates that +24 volts is applied to terminal B9.
- Off: Hardware stop by main contactor dropout.

MONITOR POINT DEFINITION

- Field volts TP6 Overcurrent trip 15 V to 0 V transition on a trip **VP10** TP3 Armature volts **VP11** TP4 Field current VP12
 - TP7 Peek software Internal diagnostic for SSD use
 - TP8 Reserved for future use
 - 0V 0 V

VP9

VP13

VP16

10 MAN MACHINE INTERFACE (MMI)

10.1 OVERVIEW

<u>DISPLAY</u>

Featured on all 590 series products is a two line sixteen character liquid crystal display designed to provide a clear and simple user interface with the product.

The use of the display is defined by the two lines of alphanumeric characters:

The upper line of the display describes the current menu or function.

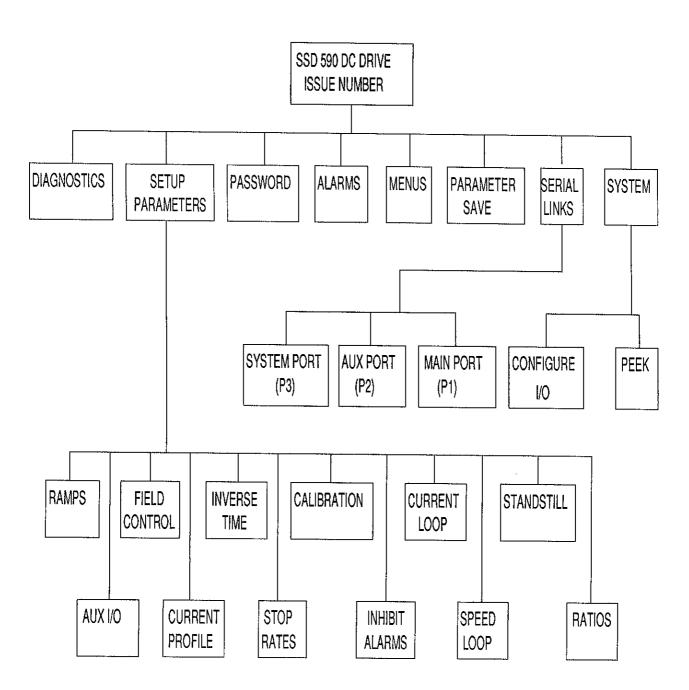
The lower line describes the next menu or function available or the displayed value or status of the function selected on the upper line.

This display philosophy gives a clear indication of where changes can be made to modify the performance of the product to suit the particular application.

FUNCTION KEYS

Adjacent to the display are four function keys which change the display within a "tree" structure to allow the user to interrogate and modify the drive parameters in a simple, user-friendly fashion.

To locate the four function keys, lower the top protective cover. A simple positive key stroke is required (key de-bounce is included in the software and multiple keys cannot be simultaneously activated). Each key is identified by an engraved legend in its top surface:


(M) MENU SELECT	This allows entry to the menu or function offered in the second line of the display. Use of this key will not alter any of the stored parameters.
(E) ESCAPE	Allows selection of the preceding menu. Use of this key will not alter any of the stored parameters. ESC always takes you back to the last point on which you were working.
(↑) RAISE	This allows movement in a forward fashion to explore the options available in any selected menu. The selected menu is always displayed on the top line of characters. When a modifiable function is displayed on the top line, the raise function will increment its value.
(↓) LOWER	This allows movement in a backward fashion to explore the options available in any selected menu. The selected menu is always displayed on the top line of characters. When a modifiable function is displayed on the top line, the lower function will decrement its value.

10.2 THE MENU TREE STRUCTURE

The menu tree structure employed in all 590 series controllers has been carefully designed to provide non-expert users with a simple and easy way to read, and set parameters associated with the drive with a minimum of key strokes and confusion.

The central core (or trunk of the tree), menu level 1, will display seven further menus each associated with one specific aspect of the product. Any of these may then be explored as branches from the central core(sub menus) until the desired function or parameter is displayed. When displayed, the value may be observed and/or changed or cancelled.

To progress from the Power-up default display SSD 590 operate the "M" key. The first menu selection DIAGNOSTICS is displayed. Scanning through the various menus is achieved by operation of the RAISE AND LOWER keys. When positioned at the desired menu operate the MENU key for more information.

10.3 DIAGNOSTICS

The primary controller diagnostics are specific monitoring points that allow the user to check the external wiring and connections to the controller. Monitoring points are also provided to examine the effect of adjusting setup parameters such as speed loop gain.

These diagnostic variables can be classified into two types:-

- 1. Variable diagnostics
- 2. Logic diagnostics

The primary diagnostics are presented on the two line display in the following format:-

MENU LEVEL DIAGNOSTICS

Here, operation of the "RAISE" or "LOWER" keys allows different menu level items to be selected. Operation of the "M" key gives the display:-

"SPEED DEMAND" "+76.0 %" (for example)

The top line now contains information about:-

- 1. The monitoring point name.
- 2. The drive terminal number (if applicable).

The bottom line displays the value and units.

Logic diagnostic "VALUE"s are indicated using appropriate names. Each monitoring point has an associated value format and value range.

Display at value level is the lowest level of the menu system, operation of the "E" key will move pointer back up to the higher menu levels.

10.4 DIAGNOSTIC DESCRIPTIONS

DIAGNOSTIC POINT	TAG	DESCRIPTION	SCALING
SPEED DEMAND	89	SPEED LOOP TOTAL SETPOINT	± 100%
SPEED FEEDBACK	62	SPEED LOOP FEEDBACK	± 100%
SPEED ERROR	64	SPEED LOOP ERROR	± 100%
CURRENT DEMAND	66	CURRENT LOOP CURRENT DEMAND (SPEED ERROR PI OUTPUT OR EXTERNAL CURRENT DEMAND CLAMPED BY ALL LIMITS)	± 200%
CURRENT FEEDBACK	65	SCALED ARMATURE CURRENT	± 200%
POSICLAMP	87	POSITIVE CURRENT CLAMP	± 200%
NEG I CLAMP	88	NEGATIVE CURRENT CLAMP	± 200%
ACTUAL POS I LIM	67	OVERALL POSITIVE CURRENT LIMIT VALUE	± 200%
ACTUAL NEG I LIM	61	OVERALL NEGATIVE CURRENT LIMIT VALUE	± 200%
CURRENT LIMITED	42	CURRENT DEMAND RESTRAINED BY OVERALL CURRENT LIMIT	TRUE/FALSE
AT ZERO SPEED	77	AT ZERO SPEED FEEDBACK	TRUE/FALSE
AT ZERO SETPOINT	78	AT ZERO SPEED SETPOINT	TRUE/FALSE
AT STANDSTILL	79	AT STANDSTILL, i.e. AT ZERO SPEED AND ZERO SPEED SETPOINT	TRUE/FALSE
STALL TRIP	112	MOTOR CURRENT LIMITED AND AT ZERO SPEED	ОК
PROGRAM STOP	80	PROGRAM STOP INPUT WHEN OFF PROGRAM STOP SEQUENCE IS ENABLED	TRUE/FALSE
DRIVE START	82	CONTROLLER START/RUN COMMAND	ON/OFF
DRIVE ENABLE	84	DRIVE CONTROL LOOP ENABLE	ENABLED/ DISABLED
FIELD ENABLE	169	DRIVE FIELD LOOP ENABLE	ENABLED/ DISABLED
FIELD DEMAND	183	FIELD CURRENT DEMAND	0 to +100%
FIELD I FBK	181	SCALED FIELD CURRENT FEEDBACK	0 to 100%
FLD FIRING ANGLE	184	CURRENT VALUE OF FIELD FIRING ANGLE	0 to 180°
ANIN 1 [A2]	50	SPEED SETPOINT No. 1	± 10V
ANIN 2 [A3]	51	SPEED SETPOINT No. 2/CURRENT DEMAND *	± 10V
ANIN 3 [A4]	52	RAMPED SPEED SETPOINT *	± 10V
ANIN 4 [A5]	53	NEGATIVE CURRENT CLAMP *	± 10V
ANIN 5 [A6]	54	EXTERNAL CURRENT LIMIT/POSITIVE CURRENT CLAMP *	± 10V

Continued/...

DIAGNOSTIC	C POINT	TAG	DESCRIPTION	SCALING
ANOUT 1	[A7]	55	SPEED SPEEDBACK *	± 10V
ANOUT 2	[A8]	56	TOTAL SPEED SETPOINT *	± 10V
START	[C3]	68	START/RUN INPUT	ON/OFF
RESERVED	[C4]	69	NO FUNCTION	OFF
ENABLE	[C5]	70	ELECTRONIC ENABLE INPUT	ON/OFF
DIGIN 1	[C6]	71	CONFIGURATION INPUT No. 1 * SINGLE CURRENT CLAMP/BIPOLAR CURRENT CLAMPS	ON/OFF
DIGIN 2	[C7]	72	RAMP HOLD INPUT *	ON/OFF
DIGIN 3	[C8]	73	CONFIGURATION INPUT No. 2 * CURRENT DEMAND ISOLATE, GIVING SPEED OR CURRENT OPERATION	ON/OFF
DIGOUT 1	[B5]	7 4	AT ZERO SPEED *	ON/OFF
DIGOUT 2	[B6]	75	DRIVE HEALTHY (DRIVE OPERATIONAL) *	ON/OFF
DIGOUT 3	[B7]	76	READY * DRIVE READY TO RUN ALL ALARMS HEALTHY	ON/OFF
SETPOINT SU	JM OP	86	SETPOINT SUBTOTAL OF DIRECT INPUTS	± 100%
RAMP OUTPU	JT	85	SETPOINT RAMP OUTPUT	± 100%
SPEED SETPO	DINT	63	SPEED LOOP TOTAL SETPOINT INC. RAMP	± 100%
TERMINAL V	OLTS	57	SCALED TERMINAL VOLTS	± 100%
BACK EMF		60	CALCULATED MOTOR BACK EMF	± 100%
TACH INPUT	[B2]	58	SCALED ANALOGUE TACHOGENERATOR FEEDBACK	± 100%
MICROTACH		59	MICROTACH SPEED FEEDBACK (DIRECT READING OF MOTOR SPEED ASSUMING STANDARD MICROTACH SCALING 1000PPR)	± 3000RPM

* Notes:- The function indicated under description is the default function of the software, actual function is determined by the setting of the source tag selection in the configuration menu.

10.5 SETUP PARAMETERS

The primary setup parameters are parameters which can be readily adjusted to suit a specific application of the controller. The primary parameters are commonly used functions. Access to these parameters is not restricted by the requirement of access code entry. Other parameters are protected and can only be modified after entering an access code on the on-board keyboard and display.

The primary setup parameters can be classified into two types:-

- 1. Variable setup parameter.
- 2. Logic setup parameter.

All these parameters are stored in non-volatile EEPROM (battery back-up is not required). On power-up of the auxiliary supply, these parameters are loaded into volatile RAM memory from the EEPROM memory.

These parameters can be altered via the MMI at any time. Note that the parameters are not transferred to non-volatile EEPROM unless a SAVE operation is performed (see later descriptions).

At the Menu Level, find the SETUP PARAMETERS menu by operating the "RAISE" and "LOWER" keys. The display will show:-

MENU LEVEL SETUP PARAMETERS

Enter the SETUP PARAMETERS menu by pressing "M". The display will show:-

SETUP PARAMETERS "RAMPS"

Here, operation of "RAISE" or "LOWER" keys allows different Submenus (RAMPS, SPEED LOOP, etc.,) to be selected.

Further operation of the "M" key gives the display:-

"RAMPS" "RAMP ACCEL TIME"

The "RAISE" and "LOWER" keys allow selection of other variables within the Submenu (e.g., RAMP DECEL TIME).

Further operation of the "M" key gives the display:-

"RAMP ACCEL TIME" " X SECS"

At this level it is possible to modify the value of the parameter. The "RAISE" and "LOWER" keys change the value displayed; and the "E" key returns to the Submenu for selection of another variable.

NOTE: TAGS

It is not possible to modify setup parameters that are connected to analog and digital inputs, these parameters will change if the input changes.

10.6 SET-UP PARAMETER DESCRIPTIONS

PARAMETER NAME	DESCRIPTION	RANGE	DEFAULT	TAG
	RAMPS			
RAMP ACCEL TIME	ACCELERATION TIME	0.1-600	10.0 seconds	2
RAMP DECEL TIME	DECELERATION TIME	0.1-600	10.0 seconds	3
MIN SPEED	MINIMUM SPEED OFFSET	± 100%	0.00%	126
RAMP HOLD	RAMP HOLD TAG	ON/OFF		118
RAMP MODE	RAMP MODE		LINEAR	46
RAMP INPUT	RAMP INPUT TAG	± 100%		5
	<u>AUX I/O *</u>			
AUX START	SOFTWARE START/RUN COMMAND	ON/OFF	ON	161
AUX ENABLE	SOFTWARE ENABLE COMMAND	ON/OFF	ON	168
AUX DIG OUTPUT 1	SOFTWARE DIGITAL TAG NO. 1	ON/OFF	OFF	94
AUX DIG OUTPUT 2	SOFTWARE DIGITAL TAG NO. 2	ON/OFF	OFF	95
AUX DIG OUTPUT 3	SOFTWARE DIGITAL TAG NO. 3	ON/OFF	OFF	96
AUX ANOUT 1	SOFTWARE ANALOGUE TAG NO. 1	± 100%	0.00%	128
AUX ANOUT 2	SOFTWARE ANALOGUE TAG NO. 2	± 100%	0.00%	129
	FIELD CONTROL			
FIELD ENABLE	When a controlled field regulator is fitted, the control algorithm must be enabled (uncontrolled diode bridge fields do not need the field enabled). Field enable allows the regulator to control field current	ENABLED/ DISABLED	ENABLED	170
FIELD CONTROL MODE	When a controlled field regulator is fitted there is a possibility of two control algorithms:	VOLTAGE OR CURRENT	VOLTAGE CONTROL	209
	 (a) Field Voltage Control, an open loop phase angle control to simulate rectifier fields. (b) Field Current Control, a closed loop current control for accurate field control or expansion to field weakening. 	CORRENT		
	FIELD VOLTAGE VARIABLES			
RATIO OUT/IN	This parameter controls the output voltage from the open loop voltage control. Where ratio is the nominal AC in to DC out ratio of a rectifier bridge.	0-100%	90% single phase rectifier	210

* Notes:- The auxiliary I/O are parameters which can be controlled either via the serial communications or by reconfiguration of other internal parameters. In the case of auxiliary command signals "auxiliary start" and "auxiliary enable" the input will be the result of the "And" of the normal signal with the auxiliary signal.

The software digital and analogue tags are internal memory locations which can be attached by configuration to the digital or analogue output and controlled by the serial communications or the MMI.

590 Manual

PARAMETER NAME	DESCRIPTION	RANGE	DEFAULT	TAG
	FIELD CONTROL/Continued			
	FIELD CURRENT VARIABLES			
SETPOINT	Field current setpoint.	0 - 100%	100%	171
PROP. GAIN	This is the proportional gain adjustment of the field PI loop.	0.00-5.00	0.10	173
INT. GAIN	When the field regulator is controlling the field current a PI loop is in operation. This is the integral gain adjustment of the PI loop	0.00-5.00	1.28	172
	FIELD WEAK VARIABLES			
FLD. WEAK ENABLE	Certain applications of a DC motor controller are best achieved in speed control by field weakening. If a controlled field regulator is fitted and enabled, field weakening enable adds the additional PID loop of the field weakening (field overspill) control.	DISABLED	DISABLED	174
EMF LEAD	With field weakening control enabled a PID loop is brought into operation this is the derivative adjustment of the field weakening PID loop.	0.10-50.00	2.00	175
EMF LAG	This is the integral adjustment of the field weakening PID loop.	1.00-100.00	40.00	176
EMF GAIN	This is the gain adjustment of the field weakening PID loop.	0.00-5.00	0.30	177
MIN FLD CURRENT	The field weakening loop reduces the field current to achieve speed control. At top speed the field reaches a minimum value. This limit is a fixed minimum value to set the absolute lower field limit.	0.00-100.00%	10.00%	179
MAX. VOLTS	Maximum volts is the level at which field weakening begins. The level is set relative to the 100% calibration value set by the calibration resistors and armature voltage calibration.	0.00-100.00%	100.00%	178
BEMF FBK LEAD		10 - 5000	100	191
BEMF FBK LAG		10 - 5000	100	192
	FIELD QUENCH CONTROLS			
FIELD QUENCH DELAY	If dynamic breaking is used the field must be maintained for a period after the drive is disabled. The field quench delay is the period of time the field is maintained.	0.1-600 seconds	10.0 seconds	185
FIELD QUENCH MODE	After the field quench delay the field can be entirely quenched or put into a standby mode at minimum field level.	QUENCH/ STANDBY	QUENCH	186
	CURRENT PROFILE			
SPEED BREAK 1 (LOW)	When speed control is obtained by field weakening, the ability of the motor to commutate current is reduced at low field currents. Speed breakpoint 1 is the relative motor speed at which current profiling begins.	0-100%	100%	32

PARAMETER NAME		RANGE	DEFAULT	TAG
	CURRENT PROFILE/Continued			
SPEED BREAK 2 (HIGH)	Speed break 2 is the upper speed limit at which current profiling ends.	0-100%	100%	31
IMAX BREAK 1 (LOW)	This sets the current limit value at or below speed break point 1, provided other limits are greater than its setting.	0-200%	200%	93
IMAX BREAK 2 (HIGH)	This sets the current limit value at or above speed break point 2.	0-200%	200%	33
	INVERSE TIME			
OUTPUT *	Overload Limit.	0-200%	200%	203
DELAY	Time at Current Limit.		10 seconds	199
RATE			60 seconds	200
AIMING POINT	Final Overload Limit Level.	0 to 200%	110%	204
	STOP RATES			
STOP TIME	Time to reach zero speed from 100% set speed in normal stop mode.	0.1-600 seconds	10 seconds	27
STOP LIMIT	Delay time limit to allow normal stop action before drive quench and coast stop.	0-600 seconds	60 seconds	217
PROG STOP TIME	Time to reach zero speed from 100% set speed in program stop mode.	0.1-600 seconds	0.1 secs	26
PROG STOP LIMIT	Delay time limit to allow program stop action before drive quench and coast stop.	0-600 seconds	60 secs	216
PROG STOP I LIM	Current limit level in program stop mode provided other limits are set higher.	0-200%	100.00%	91
STOP ZERO SPEED	Zero speed level in program stop + normal stop mode at which contactor is de-energised and the drive quenched.	0.00-10.00%	2%	29
	CALIBRATION			
ARMATURE V CAL	Trim adjustment of the motor armature level giving 100% armature volts. Note:- Primary voltage calibration is achieved by the selection of resistors R8 and R9 on the calibration board.		1,0000	20
IR COMPENSATION	Compensation for motor IR drop to improve regulation when using armature voltage feedback for speed control.	0-100%	0.00%	21
MICROTACH RPM	Motor top speed setting when using the 5701 microtach unit for speed feedback.	0-3000 RPM	1000 RPM	22
ANALOG TACH CAL	Trim adjustment of the motor speed at 100% speed demand.	0.9800 to 1.1000	1.0000	23
:	Note:- Primary tacho calibration is achieved by the selection of resistors R4 and R5 on the calibration board.			

* Diagnostic Parameter only.

PARAMETER NAME	DESCRIPTION	RANGE	DEFAULT	TAG
	CALIBRATION /Continued			
ENCODER LINES	The SSD Microtach has 1000 lines per revolution as standard, proprietary encoders of other specifications can be normalised by setting this parameter as appropriate.		1000	24
ARMATURE I (A9)	Sets operation of current meter output, either bipolar or unipolar.	UNIPOLAR/ POLAR	BIPOLAR	25
SPDFBK ALARM LEVEL	The speed feedback alarm compares speed feedback to armature voltage. The alarm level is the difference at which the alarm is set.	0-100%	50%	180
FIELD I. CAL	Trim adjustment of the motor field at 100% field current demand. Note:- Primary field calibration is achieved by the selection of resistors R6 and R7 on the calibration board.	0.9500 to 1.1000	1.0000	182
	INHIBIT ALARMS			
FIELD FAIL	Minimum field current level alarm.	ENABLED/ INHIBITED	ENABLED	19
5703 RCV ERROR	5703 Serial communications receive error.	ENABLED/ INHIBITED	ENABLED	111
STALL TRIP	Motor stalled alarm.	ENABLED/ INHIBITED	INHIBITED	28
SPEED FBK ALARM	Speed feedback alarm.	ENABLED/ INHIBITED	ENABLED	81
MICROTACH ALARM	Microtach option board alarm.	ENABLED/ INHIBITED	ENABLED	92
	CURRENT LOOP			
CURRENT LIMIT	Internal main current limit parameter.	0.00-200.00%	100.00%	15
PROP GAIN	Proportional gain control for armature current PI loop. This parameter is normally set during the autotune function.	1.00-100.00	45.00	16
INT GAIN	Integral gain control for armature current PI loop. This parameter is normally set during the autotune function.	0.10-50.00	3.50	17
AUTOTUNE	Initiating control for current loop autotune adjustment. (See description at the end of table)		OFF	18
FEED FORWARD	Autotune control parameter. Set by autotune algorithm. Do not adjust independently.	0.10-50.00	2.00	136
DIS/CONTINUOUS	Autotune control parameter. Set by autotune algorithm. Do not adjust independently.	0.00-200.00%	12.00%	137
ADDITIONAL DEM	Additional Current Demand Input.	± 200%	0.00%	30
BIPOLAR CLAMPS	Select Bipolar/Unipolar Clamps.	ENABLED/ DISABLED	DISABLED	90
REGEN MODE	Single ended or Regen Stack.	ENABLED/ DISABLED	ENABLED	201
NEG I CLAMP	Negative clamp in Bipolar Clamp Mode.	+ 200%		48
IDEM ISOLATE	Speed Demand or Current Demand.	ENABLED/ DISABLED	DISABLED	119

590 Manual

PARAMETER NAME	DESCRIPTION	RANGE	DEFAULT	TAG
	SPEED LOOP			
PROP. GAIN	Speed loop PI proportional gain adjustment.	0-200	20.00	14
INT. TIME CONST.	Speed loop PI integral gain adjustment.	1-6000 msec	1000 msec	13
ZERO SPEED OFFSET	Zero motor speed for zero setpoint input trim adjustment.	± 5.00%	0.00%	10
ADDITIONAL DEM	Additional Speed Demand.	± 100.00%	0.00%	41
INT. DEFEAT	Inhibits the integral part of the speed loop PI control to give proportional gain only speed control.	ON/OFF	OFF	202
MICROTACH SIGN	Since the microtach feedback cannot be reversed electrically, the signal polarity must be reversed by the control software.	POSITIVE/ NEGATIVE	POSITIVE	49
SPEED FBK SELECT	 Three options are available:- i) Armature voltage feedback ii) Analogue tachogenerator feedback iii) Microtach feedback. 	ARMATURE VOLTS/ ANALOG TACH/ MICROTACH	ARM VOLTS FBK	47
	STANDSTILL			
STANDSTILL LOGIC	Standstill Logic inhibites the controller at zero setpoint and zero speed, i.e. standstill.	ENABLED/ DISABLED	DISABLED	11
ZERO THRESHOLD	Signal Level which determines zero setpoint, zero speed threshold and zero speed relay output [BS]	0.00-5.00%	1.00%	12
	RATIOS			
RATIO 1	Speed Input 1 Scaling	± 3.0000	1.0000	6
RATIO 2	Speed Input 2 Scaling	± 3.0000	1.0000	7
SIGN 1	Speed Input 1 Polarity	POS-NEG	POSITIVE	8
SIGN 2	Speed Input 2 Polarity	POS-NEG	POSITIVE	9
DEADBAND WIDTH	Analogue Input 2 Deadband	0.0 to 100.0%	0.0%	131
INPUT 2	Analogue Input 2	± 100.00%		101

10.7 AUTO - TUNE

The Auto-Tune facility provided for automatic adjustment of the Current Loop control parameters is easy to use provided certain rules are observed.

10.7.1 If there is field current in the motor Auto-Tune cannot be satisfactorily activated at any time, this can be overcome in two ways:-

- For a controller with a fixed field rectifier the motor field must be disconnected at terminals D3 and D4 to (i) prevent current flow and the field failure alarm inhibited in the Inhibit Alarms Sub-Menu.
- (ii) For a controller with a field regulator no action need be taken provided the correct sequence is operated from the stop condition.

Providing the field current qualifications are observed the following sequence will always ensure satisfactory operation of the Auto-Tune function.

10.7.2 Initial Conditions:-

- Main Contactor open, no "START/RUN" signal on C3. (a)
- (b) Auto-Tune flag OFF.
- (c) Controller Disabled at terminal C5.
- Program Stop [B8] and Coast Stop [B9] inputs true. (d)
- Note: (i) The motor shaft may require to be clamped to prevent rotation during the autotune operation.

(ii) When using a permanent magnet motor the shaft must be clamped.

10.7.3 Sequence:-

- (a) Close main contactor by operation of the controller "START/RUN" terminal C3.
- (b) Set Auto-Tune flag ON.
- (c) Enable controller at terminal C5.

10.7.4 The controller will then perturb the current loop adjusting the parameters in the current loop to give optimum response.

These parameters are:-

- Current Proportional Gain 1
- 2) 3) 4) Current Integral Gain
- Discontinuous
- Feed Forward

Parameters 3 and 4 give optimum performance of the loops but should not be adjusted outside the Auto-tune algorithm. Conversely optimum performance of the Current Loop cannot be achieved without the setting of these two parameters, thus the Auto-tune facility should be completed at least once with each controller - motor combination.

10.7.5 After the Auto-Tune action has been completed the Main Contactor is opened automatically signalling the end of the algorithm and returning the controller to a safe condition.

If the motor turns the action will cease automatically. Removal of the START/RUN or ENABLE commands will stop the controller action immediately in both cases the main-contactor is opened.

10.7.6 At this point the parameters adjusted by the Auto-Tune facility must be "saved" otherwise loss of power will cause the loss of these parameters. Remember that any parameters set to allow the running of the Auto-Tune facility should be reset before the saving operation is executed. This includes the "START/RUN" and "ENABLE" input signals which are still active although the "MAIN CONTACTOR" has been opened automatically.

10.7.7 Restore field connections if disconnected and remove mechanical clamp before proceeding further.

10.8 PASSWORD

In order to ensure security of the Set-Up Parameters and Configuration data the controller is "Password" protected.

The Password Sub-Menu consists of three simple entries:-

- a) Enter Password
- b) Change Password
- c) Clear Password

At Power-up the "Display Password" is automatically cleared to zero. If the "Controller Password" is set to a value which is non zero then the MMI is in a restricted access mode and Set-up values are only displayed and cannot be altered.

If the user goes to the "Enter Password" sub-menu level and changes the "Displayed Password" to the "controller Password" then restricted access is lifted as long as the display value and the controller password coincide.

The user can put the MMI back into restricted access mode by simply going to the "Clear Password" sub-menu level pressing the enter key "E" and the "Displayed value" will be cleared.

In the general access mode with "Displayed Password" and "Controller Password" coincident the "Controller Password" can be changed to any value by use of the "Change Password" sub-menu here the "Controller Password" value can be altered by the up or down keys. On leaving the menu on prompt "Please Remember" draws attention to the fact that the value is changed.

In order to allow immediate access to the controller set-up parameters the default value of "Controller Password" is set to zero hence the "Displayed Value" and the "Controller Password" value coincide at initial power-up.

10.9 ALARMS

The controller alarms are, in general, latched digital outputs that indicate fault conditions within the controller/motor combination. These alarms are gated together to provide a "controller healthy" logic variable. If the healthy variable is not true, the armature current is inhibited and the main contactor control relay is de-energised.

In the case of a fault the MMI will automatically display the activated alarm, together with its current status.

Selected alarms are non-fatal under certain conditions, and therefore are not gated or latched into the health logic variable.

Operation of the "E" key will move the display back to the previous position.

The alarm condition may be reset by opening and closing the main contactor.

The controller alarms are presented below:-

ALA	NRM	DESCRIPTION	INHIBIT
1.	OVERSPEED	MOTOR OVERSPEED	
2.	MISSING PULSE	MISSING ARMATURE CURRENT PULSE	
3.	FIELD OVERCURRENT	MOTOR FIELD OVERCURRENT	
4.	FIN TEMPERATURE	FIN OVERTEMPERATURE	
5.	MOTOR TEMPERATURE	MOTOR OVERTEMPERATURE	
6.	OVERVOLTS	MOTOR OVER VOLTS	
7.	TACH FAIL	SPEED FEEDBACK FAIL	YES
8.	MICROTACH	MICROTACH SIGNAL FAILURE	YES
9.	FIELD FAIL	FIELD FAIL	YES
10.	3 PHASE PRESENT	3 PHASE SUPPLY PRESENT	
11.	PHASE LOCK	AC SYNCRONISATION FAILED	
12.	P3 PORT	P3/5703 RECEIVE ERROR	YES
13.	STALL TRIP	MOTOR STALL STRIP	YES
14.	OVERCURRENT TRIP	ARMATURE OVERCURRENT	<u> </u>
15.	CAL. BOARD	CAL. BOARD NOT FITTED	
16.	ACCTS FITTED	ACCTS NOT CONNECTED	
17.	AUTOTUNE ERROR	AUTOTUNE OPERATIONAL ERROR	
18.	AUTOTUNE ABORT	AUTOTUNE EXTERNAL ABORT	

1. A delay of about 60 seconds takes place before the missing pulse alarm is latched into the health logic.

2. The microtach alarm and comms link alarms are disabled automatically when microtach feedback is not selected or the serial link is disabled.

HEALTH WORD / STORE

BIT	ALARM	VALUE
0	OVERSPEED	1
1	MISSING PULSE	2
2	FIELD OVERCURRENT	4
3	FIN OVERTEMPERATURE	8
4	MOTOR OVERTEMPERATURE	1Ø
5	MOTOR OVERVOLTS	2Ø
6	SPEED FEEDBACK	4Ø
7	MICROTACH FAIL	8Ø
8	FIELD FAIL	1ØØ
9	THREE PHASE	2ØØ
10	PHASE LOCKED LOOP	4ØØ
11	P3 PORT	8ØØ
12	STALL STRIP	1ØØØ
13	OVERCURRENT TRIP	2ØØØ
14	CAL BOARD	4ØØØ
15	ACCTS	8ØØØ

After an alarm has occurred the Health Store shows the first alarm which has occurred and caused the trip condition. The Health Word will show the current status of all the alarms.

Hence if the controller trips on P3 Port alarm the Health Store will show $\emptyset 8 \emptyset \emptyset$ while the Health Word will show the Hexadecimal sum of P3 Port alarm and Three Phase alarm, $\emptyset 8 \emptyset \emptyset$ and $\emptyset 2 \emptyset \emptyset$ which is $\emptyset A \emptyset \emptyset$.

If the controller trips on Motor Overtemperature the Health Store shows $\emptyset\emptyset1\emptyset$ and the Health Word shows Motor Overtemperature and Three Phase which is $\emptyset21\emptyset$.

10.10 ALARM DESCRIPTION

General

The following alarm outputs are used to protect the 590 controller/motor combination. The two line display is used to indicate to the technician the type of failure.

If a failed alarm becomes active when the controller is started, the Thyristor firing circuits are inhibited and the main contactor is de-energised.

The alarm is latched and is automatically displayed from the time of failure. The display shows the CURRENT STATUS of the alarm, which may be OK by the time you read the display. The failed alarm may also be read as a health word, via the serial communications link.

The first alarm that causes failure is latched, and subsequent alarms are ignored. This allows easy fault determination within the controller.

The latched alarm is reset by stopping and re-starting the controller.

1. Overspeed Alarm

If the speed feedback signal exceeds 110% of the expected level, overspeed alarm is activated. The alarm is likely to be caused by a badly adjusted speed loop or field weakening loop.

2. Missing Pulse Alarm

The controller continuously monitors the armature current waveform. If a fault develops within the controller the armature current waveform shape may become very distorted. Although the controller may appear to function normally, the motor will experience severe heating due to the distorted current waveform.

If the armature current becomes distorted, the missing IA pulse alarm will operate and the motor will be protected.

The most usual cause for missing pulse failure is incorrect setup of the controller. The nearest SSD sales and service outlet should be contacted.

3. Field Overcurrent Alarm

When the field regulator is enabled the controller checks that the field current, If, does not exceed 110% of the calibrated value. This alarm is normally triggered by regulator failure or a badly tuned control loop.

4. Fin Temperature Alarm

Higher horsepower versions of the model 590 (above 70 amp bridge rating) are equipped with blowers to force extra cooling air over the heatsink of the product. These 590 versions are equipped with a thermal switch on the heatsink.

In the event of blower failure, or restriction of the cooling airflow, the heatsink temperature may rise to unacceptable limits. Under these conditions, the heatsink switch will open, and the stack temp alarm will operate.

If this alarm operates, the heatsink blower should be checked and the cooling air path should be checked for obstructions. If the blower does not run, the fuse should be checked on the power board of the product. This fuse is labelled FS 1, and if blown, must be replaced with a fuse of the same rating. The blower fuse rating is 1A quick blow.

The stack must be allowed to cool in order to re-start the controller.

5. Motor Temperature Alarm

It is good practice to protect DC motors against sustained thermal overloads by fitting temperature sensitive resistors or switches in the field and interpole windings of the machine. Temperature sensitive resistors have a low resistance (typically 200 Ohms), up to a reference temperature (125°c), above this, their resistance rises rapidly to greater than 2000 Ohms. Temperature switches are usually normally closed, opening at about 105°c.

Motor overtemperature sensors should be connected in series between terminals C1 and C2. If the motor temperature rises such that the resistance of the sensor exceeds 1800 Ohms, the motor temp alarm will fail. If this happens the motor must be allowed to cool before the alarm can be reset by re-starting the drive.

Motors overheat due to many factors, but the most common cause is inadequate ventilation. Check for blower failure, wrong rotation of the blower, blocked ventilation slots, and clogged air filters. Other causes of overheating relate to excessive armature current. The armature current on the motor nameplate should be checked against the current rating for the 590. This rating is for a 100% current demand.

There is no motor temperature alarm inhibit: terminals C1 and C2 must be linked if overtemperature sensors are not used.

6. VA Overvolts Alarm

If the motor armature voltage exceeds 110% of the expected level the alarm is operated. When triggered the cause maybe a badly adjusted field or field loop, or a badly adjusted field weakening loop.

7. Speed Feedback Alarm

A continuous comparison is made by the controller of the speed feedback and armature voltage if the difference is greater than the value set by the speed feedback alarm level the alarm is operated. If armature voltage feedback is selected then the speed feedback alarm is automatically suppressed. It can also be suppressed in the inhibit alarms sub menu.

The speed feedback alarm is normally triggered by failure of the feedback mechanism in one of the following ways:-

- (i) Disconnection of wiring including fibre optics.
- (ii) Failure of the tachogenerator.
- (iii) Failure of the tachogenerator coupling.

8. Microtach Alarm

The 590 is designed to accept speed feedback signals from the SSD Microtach. This is a custom digital tachometer which communicates to the 590 via an optical fibre link.

In the event of failure of this tach, or failure of the optical fibre link, the microtach alarm will operate.

If this occurs, the fibre optic link to the 590 should be checked for damage. The bend radius of the fibre optic cable must not be exceeded or this may cause failure.

The Microtach will operate over the range 5 to 40 meters (15 to 120 feet) of fibre optic cable. If this maximum length is exceeded, the Microtach alarm may operate. In this case one or more repeater modules must be inserted in the link to boost the signal to the 590.

The SSD Microtach is optional to the 590 Series controller. If the module is not fitted the Microtach alarm is automatically inhibited.

Motor Field Fail

If the 590 is configured with an uncontrolled field bridge supply, this alarm will show a failed condition if the motor field current drops below a preset value. (This value is a percentage of programmed full field current.)

If the field configuration includes a field regulator bridge, the alarm will show a failed condition if the field current drops below the value set by the field controller current demand. Faulty operation of the field controller will also cause a motor field fail alarm.

The most usual cause for the motor field alarm is an open circuit motor field; if this alarm occurs, the motor field connections should be checked and the field resistance measured.

If the 590 is operating a motor which requires no field supply, for example a permanent magnet motor, then the field fail inhibit should be used. This is included in the setup parameters and will inhibit the field fail alarm for these applications.

10. Three Phase Supply Present

The controller continuously monitors the incoming three phase supply of the L1, L2 and L3 busbars. If the supply fails when the start contactor is energised, the three phase supply alarm will operate.

The controller will detect total failure of the supply. A missing phase is detected under most circumstances. However, if the controller is connected to the same supply as other equipment there is a possibility that this equipment may generate a voltage in the missing phase. Under these circumstances, the three phase supply alarm may not fail.

In the case of a missing phase alarm, the supply to the controller should be checked. The controller should be provided with high speed fusing to protect the thyristor stack in the case of direct output short circuits. These fuses should be checked.

590 Series controllers are available with three supply voltage options:-

- 1. 110 to 220VAC.
- 2. 220 to 500VAC.
- 3. 500 to 660VAC 598/599 (External Stack Only).

The voltage option is specified in the product code which is shown on the rating label. The three phase supply alarm may operate if the wrong supply voltage option is specified for the controller.

The three phase supply alarm will only operate when the start contactor is energised. This allows either AC or DC main contactors to be used with the controller.

If the three phase supply alarm is reset without rectifying the supply fault, the start contactor will energise, the alarm will operate again, and the contactor will drop out.

11. Phase Lock Alarm

The 590 controller automatically "locks on" to any three phase supply within a frequency range of 45 to 65 Hertz. This allows the thyristors to be fired at the correct times during each supply cycle. The synchronisation circuit will reject a large level of supply distortion and this allows accurate firing at all times.

If the supply frequency exceeds the limits the firing synch alarm will operate. If the controller is supplied from a power supply which is highly distorted this may cause synchronisation errors which will cause the alarm to operate.

In the case of firing synch failure contact the nearest SSD sales and service outlet.

12. P3 Port Alarm

The P3 serial data port receives and transmits information to other controllers and computers during the receive cycle it checks that the data received is valid. If invalid it raises an alarm.

13. Stall Trip Alarm

A dc motor is not capable of carrying full load current when stationary if the controller is in current limit and the motor is stationary the controller will generate a stall trip alarm.

14. Overcurrent Trip

A hardware current trip is provided on the 590 control board. If the armature current ever exceeds 300% of rated value, the trip will operate. Under these conditions, the current trip alarm will fail.

The current trip will operate for two basic reasons:-

- 1. Motor Faults: If the motor armature windings fail, the armature resistance may drop sharply. This may cause excessive armature current which will activate the current trip. If this occurs, the motor armature should be checked (Meggered) for insulation resistance, which should be above acceptable limits. If the motor becomes completely short circuit, the current trip will not protect the controller. High speed Thyristor fusing should always be provided to protect the thyristor stack in the case of direct output short circuits.
- 2. Controller Faults: In the event of 590 faults the current trip may operate. For example if the main processor becomes faulty, the hardware current trip ensures that the incoming supply is safely disconnected from the controller via the start contactor.

15. Cal Board Fitted Alarm

Calibration resistors are necessary for:-

- 1. Armature current.
- 2. Field current.
- 3. Armature voltage.
- 4. Analogue tachometer feedback.

These calibration components allow the 590 to be calibrated quickly and accurately to specific motor requirements.

To ease this calibration process, and to allow rapid replacement of the controller should a fault occur, the calibration components are mounted on a plug-in card under the bottom flap of the product. If the card is not fully installed, the cal board fitted alarm will operate when the controller is started.

If this alarm operates the calibration board should be checked for correct insertion.

16. ACCTS Present Alarm

The motor armature current is monitored by the 590 using current transformers. These transformers are mounted on the heatsink and are connected to the control circuit via a plug on the power board.

This plug has an extra link which allows monitoring the presence, or absence, of this plug. If the plug is not installed and the controller is started, the IA feedback alarm will operate. This prevents starting of the controller without armature current feedback.

This feature is especially important in the case of external stack controllers, where the thyristor stack is remote from the control board. Here, it is quite conceivable that the controller could be started without the current transformers plugged in.

If this alarm operates, the armature current transformer plug should be checked for correct installation.

17. Autotune Error

The controller will flag an "autotune error" if there is an overcurrent trip fault or if the motor rotates during the autotune activity.

18. Autotune Abort

The controller will abort the autotune function if the enable or start/run terminals are disabled.

10.11 MENUS

The overall Menu structure for the complete set of sub-menu levels consists of more entries than are required during normal operation. In recognition of this the MMI Menu structure can be put into a reduced Menu mode giving only commonly used diagnostics and set-up parameters.

The reduced Menu structure is invoked by disabling the Full Menu.

The response delay or button delay of the MMI can also be altered. By increasing the number in the "Delay" parameter the MMI response time is increased, by decreasing the parameter the response time is decreased.

10.12 PARAMETER SAVE

Whenever parameters are adjusted or altered to settings other than those previously stored in the non-volatile memory, it is important to save the new values to prevent loss due to power failure or an unexpected power-alarm.

To perform a Parameter Save or Store use the following sequence:

- 1. Go to "Parameter Save" Sub Menu.
- 2. Enter sub-menu with "M" key where the display will show "Up to Action".
- 3. Press "Up" arrow key and the display changes to "Saving" to indicate that the save activity is progressing.
- 4. Wait until the Display shows "Finished" before trying to Exit from the routine. Premature exit is prevented by the controller software.

Parameter save function can be performed when the motor is running.

Note:

If a Parameter Save is performed after running the auto-tune algorithm, Field override and any other parameters set to allow the auto-tune algorithm to run should be returned to their normal level before a Save is carried out to prevent incorrect data from being stored.

10.13 SERIAL LINKS

The 590 Controller supports three separate serial communication channels each of which has a separate system function. These Serial Link Ports are:-

- a) The Main Port P1, which enables the Controller to communicate with a Host computer, other controllers and Eurotherm group products.
- b) The Auxiliary Port P2, which enables the controller to communicate to auxiliary products such as the 5721 operator station.
- c) The P3 Port, which enables the controller to communicate set-up data and configuration data to a support computer system.

The Main Port P1 and Auxiliary Port P2 provide full system support using the Eurotherm Bisynch. Communications protocol. Both ports include hardware which provides balanced line driver and line receiver signal levels although the P1 Port has the advantage of including completely isolated output signals.

The additional P3 Port is not intended for full systems use it is a simple RS232 port giving unbalanced no isolated output signals.

The P3 Port has three functions:-

- a) 5703 support giving controller to controller transfer of speed setpoint or speed feedback values.
- b) Upload/Download of controller configuration and parameters. *
- c) Parameter dump of controller MMI entries to a compatible printer or support computer.

* Not available on Issue 1 software.

SERIAL LINK PARAMETERS

	DESCRIPTION				TAG	
PARAMETER		RANGE	DEFAULT	MAIN PORT P1	AUXILIARY PORT P2	
SERIAL LINK ENABLE	ENABLE PORT OPERATION		NABLE/ NSABLE	DISABLED	146	147
GROUP ID	EUROTHERM PROTOCOL GROUP IDENTITY	0 - 7		00	138	140
UNIT ID	EUROTHERM PROTOCOL UNIT IDENTITY	0 - F (15)		00	139	141
ASCII/BINARY	EUROTHERM PROTOCOL SELECTION OF EITHER ASCII OR BINARY	ASCII/ BINARY		ASCII	148	149
BAUD RATE	SERIAL COMMUNICATIONS TRANSMIT AND RECEIVE DATA RATE	300 - 19200		9600	150	151
ESP SUP. (ASCII) ESP SUPPORT ENABLE ENABLE/ DISABLE			DISABLED	152	153	
CHANGEBAND (BIN)	CHANGE IN VALUE TO TRIGGER BINARY ENQUIRY POLL UPDATE	0.00% to 100.00%		0.00%	144	145
ERROR REPORT			· · · · · · · · · · · · · · · · · · ·		158	159
PNO.7	CONTROL WORD FOR MULTIPARAMETER POLLING	0 to FFFF		0	142	143
SYSTEM PORT	<u>5703</u> (P3)				· · · · · · · · · · · · · · · · · · ·	TAG
PARAMETER	DESCRIPTION	R		ANGE	DEFAULT	SYSTEM PORT
SETPOINT RATIO	INPUT SCALER	0 to		3.0000	0.0000	132
SETPOINT SIGN	INPUT SIGN	POSITIVI		E/NEGATIVE	POSITIVE	133
5703 INPUT	5703 INPUT DIAGNOSTIC ±		±3	00.00%		187
5703 OUTPUT	5703 OUTPUT DIAGNOSTIC ±		00.00%		189	
5703 MODE	5703 STATUS			E/MASTER/ LAVE	DISABLE	130
DUMP MMI \rightarrow P3	DUMP COMPLETE MMI DATA TO P3 F	ORT				· · · · · · · · · · · · · · · · · · ·
P3 BAUD RATE	P3 TRANSMIT/RECEIVE DATA RATE	ANSMIT/RECEIVE DATA RATE		300 → 19200 57600		198

MMI

590 Manual

10.14 SYSTEM

FUNCTION	DESCRIPTION	RANGE	DEFAULT	TAG
	CONFIGURE I/O			
CONFIGURE ENABLE	PERMIT I/O CONFIGURATION FLAG 1	ENABLED/ DISABLED	DISABLED	39
	ANALOG INPUTS			
<u>ANIN 1 (A2)</u>				
CALIBRATION	ANALOG INPUT SCALING DETERMINING VALUE = 100%	0.0000	1.0000	230
MAX VALUE	MAXIMUM VALUE OF SCALED ANALOG INPUT	± 300.00%	+ 100.00%	231
MIN VALUE	MINIMUM VALUE OF SCALED ANALOG INPUT	± 300.00%	- 100.00%	232
<u>ANIN 2 (A3)</u>				
CALIBRATION	ANALOG INPUT SCALING DETERMINE VALUE = 100%	0.0000 -3.0000	1.0000	233
MAX VALUE	MAXIMUM VALUE OF SCALED ANALOG	± 300.00%	+ 100.00%	234
MIN VALUE	MINIMUM VALUE OF SCALED ANALOG INPUT	± 300.00%	- 100.00%	235
DESTINATION TAG	DESTINATION OF SCALED ANALOG INPUT VALUE		101	247
<u>ANIN 3 (A4)</u>				
CALIBRATION	ANALOG INPUT SCALING DETERMINE VALUE = 100%	0.0000 -3.0000	1.0000	236
MAX VALUE	MAXIMUM VALUE OF SCALED ANALOG INPUT	± 300.00%	+ 100.00%	237
MIN VALUE	MINIMUM VALUE OF SCALED ANALOG	± 300.00%	- 100.00%	238
DESTINATION TAG	DESTINATION OF SCALED ANALOG INPUT VALUE		5	249
ANIN 4 (A5)				
CALIBRATION	ANALOG INPUT SCALING DETERMINE VALUE = 100%	0.0000 -3.0000	1.0000	239
MAX VALUE	MAXIMUM VALUE OF SCALED ANALOG	± 300.00%	+ 100.00%	240
MIN VALUE	MINIMUM VALUE OF SCALED ANALOG	± 300.00%	- 100.00%	241
DESTINATION TAG	DESTINATION OF SCALED ANALOG INPUT VALUE		48	250
ANIN 5 (A6)				
CALIBRATION	ANALOG INPUT SCALING DETERMINE VALUE = 100%	0.0000 -3.0000	1.0000	242
MAX VALUE	MAXIMUM VALUE OF SCALED ANALOG	± 300.00%	+ 100.00%	243
MIN VALUE	MINIMUM VALUE OF SCALED ANALOG INPUT	± 300.00%	- 100.00%	244

1 During the process of reconfiguration there is a danger that "Tags" will be connected to wrong parameters. To avoid this possibility all configuration links must be temporarily "disconnected" during the configuration process and the flag set to "enabled" to allow the activity. Failure to reset the flag to "disabled" after reconfiguration will cause an Alarm to be generated, "Configure Enabled", which will prevent drive operation. (In early versions of software the alarm may read F200)

590 Manual

FUNCTION	DESCRIPTION	RANGE	DEFAULT	TAG
	ANALOG OUTPUTS			
<u>ANOUT 1 (A7)</u> % TO GET 10V				
SOURCE TAG	VALUE WHICH PRODUCES 10V OUTPUT	0 - 300.00%	100.00%	245
ANOUT 2 (A8)	SOURCE OF OUTPUT VALUE		62	251
% TO GET 10V	VALUE WHICH PRODUCES 10V OUTPUT	0 200 000	100.00%	
SOURCE TAG	SOURCE OF OUTPUT VALUE	0 - 300.00%	100.00%	248
SOURCE IAG	DIGITAL INPUTS		63	252
<u>DIGIN 1 (C6)</u>	DIGITAL INFUTS			
VALUE FOR TRUE	VALUE OF TAG ASSUMED WHEN INPUT IS TRUE	± 100.00%	0.01%	103
VALUE FOR FALSE	VALUE OF TAG ASSUMED WHEN INPUT IS FALSE	± 100.00%	0.00%	104
DESTINATION TAG	DESTINATION OF ASSUMED TAG VALUE		90	102
<u>DIGIN 2 (C7)</u>				
VALUE FOR TRUE	VALUE OF TAG ASSUMED WHEN INPUT IS TRUE	± 100.00%	0.01%	106
VALUE FOR FALSE	VALUE OF TAG ASSUMED WHEN INPUT IS FALSE	± 100.00%	0.00%	107
DESTINATION TAG	DESTINATION OF ASSUMED TAG VALUE		118	105
<u>DIGIN 3 (C8)</u>				
VALUE FOR TRUE	VALUE OF TAG ASSUMED WHEN INPUT IS TRUE	± 100.00%	0.01%	109
VALUE FOR FALSE	VALUE OF TAG ASSUMED WHEN INPUT IS FALSE	± 100.00%	0.00%	110
DESTINATION TAG	DESTINATION OF ASSUMED TAG VALUE		119	108
DIGOUT 1 (B5)	DIGITAL OUTPUTS			
THRESHOLD (>)	THRESHOLD WHICH VALUE MUST EXCEED TO SET OUTPUT TRUE	0-100.00%	0.00%	195
MODULUS	OUTPUT SET TRUE FOR ABSOLUTE OR MODULUS OF TAG VALUE	TRUE/ FALSE	TRUE	43
SOURCE TAG	SOURCE OF TAG VALUE USED TO SET OUTPUT	THESE	77	97
DIGOUT 2 (B6)				
THRESHOLD (>)	THRESHOLD WHICH VALUE MUST EXCEED TO SET OUTPUT TRUE	0-100.00%	0.00%	196
MODULUS	OUTPUT SET TRUE FOR ABSOLUTE OR MODULUS OF TAG VALUE	TRUE/ FALSE	TRUE	44
SOURCE TAG	SOURCE OF TAG VALUE USED TO SET OUTPUT		122	98
DIGOUT 3 (B7)				
THRESHOLD (>)	THRESHOLD WHICH VALUE MUST EXCEED TO SET OUTPUT TRUE	0-100.00%	0.00%	197
MODULUS	OUTPUT SET TRUE FOR ABSOLUTE OR MODULUS OF TAG VALUE	TRUE/ FALSE	TRUE	45
SOURCE TAG	SOURCE OF TAG VALUE USED TO SET OUTPUT		125	99
	CONFIGURE 5703			
OUTPUT SOURCE TAG	5703 OUTPUT SOURCE TAG		89	134
INPUT DESTINATION	5703 INPUT DESTINATION TAG		41	135

10.15 TAGS

Each Parameter in the 590 has a unique tag number associated with it.

Eg. RAMP ACCEL TIME HAS A TAG "2"

The reason for giving each parameter a number is to identify it for use in reconfiguring the 590's IO.

10.15.1 590 IO

<u>Overview</u>

The 590 user IO consists of 18 terminals situated at the base of the product. These include 5 Analog inputs, 3 Analog outputs, 6 Digital inputs and 3 digital outputs.

Туре	Terminal	Fixed	Default Function
Analog Input 1	A2	Yes	Setpoint Sum Input 1.
Analog Input 2	A3	No	Setpoint Sum Input 2.
Analog Input 3	A4	No	Ramp Input.
Analog Input 4	A5	No	Negative Current Limit.
Analog Input 5	A6	Yes	Main / Positive Current Limit.
Analog Output 1	A7	No	Speed Feedback
Analog Output 2	A8	No	Speed Demand
Analog Output 3	A9	Yes	Uni/Bipolar Current Feedback
Digital Input 1	C6	No	Uni/Bipolar Current Clamps
Digital Input 2	C7	No	Ramp Hold
Digital Input 3	C8	No	Current Demand Isolate
Digital Output 1	В5	No	Zero speed
Digital Output 2	B6	No	Healthy
Digital Output 3	B7	No	Ready

10.15.2 Reconfiguring IO

All the IO that is not fixed can be reassigned, therefore it is possible to reconfigure Analog output 1 to output Ramp Output or any other of the drives parameter.

In the same way inputs can be reconfigured, although only to a subset of the 590's parameters. This is to prevent analog input being connected to Read Only parameters etc.

10.15.3 Examples

10.15.3.1 Analog Outputs

There are no restrictions to where an analog outputs may be assigned. Associated with each output is a scalar, this sets the percentage of the variable to give 10v at the terminal. This can assume positive and negative values which will set the sign of the output.

Example 1 Connecting Field Current Feedback to Analog Output 1

- 1. Find the tag number associated with Field Current Feedback.
- 2. Enter 181 into "ANALOG OUTPUTS / ANOUT 1 (A7) / SOURCE TAG = 181"
- 3. Enter 100% into "ANALOG OUTPUTS / ANOUT 1 (A7) / % TO GET 10v = 100%

Example 2 Connecting Current Demand to Analog Output 2

- 1. Find the tag number associated with Current Demand
- 2. Enter 66 into "ANALOG OUTPUTS / ANOUT 2 (A8) / SOURCE TAG = 66"
- 3. Enter 200% into "ANALOG OUTPUTS / ANOUT 2 (A8) / % TO GET 10v = 200% We have entered 200% so for 100% current feedback we will get 5 volts.

Example 3 Connecting Serial Link to Analog Output 1

- 1. Find the tag number associated with AUX ANOUT 1
- 2. Enter 128 into "ANALOG OUTPUTS / ANOUT 1 (A7) / SOURCE TAG = 128"
- 3. Enter 100% into "ANALOG OUTPUTS / ANOUT 1 (A7) / % TO GET 10v = 100%
- 4. Analog Output 1 is now accessible over the serial link as PNO 55 (ASCII 3B)

10.15.3.2 Digital Outputs

Digital Outputs can be connected to any tag. If a digital output is connected to an analog parameter the threshold must also be set.

IF MODULUS = TRUE

IF Isource TAGI > THRESHOLD

THEN output = TRUE

ELSE output = FALSE ELSE IF MODULUS = FALSE

IF source TAG > THRESHOLD THEN output = TRUE

ELSE output = FALSE

Example 1 Connecting Speed feedback to Digital Output 1

- 1. Find the tag number associated with speed feedback
- 2. Enter 62 into "DIGITAL OUTPUTS / DIGOUT 1 (B5) / SOURCE TAG = 62"
- 3. Enter 50% into "DIGITAL OUTPUTS / DIGOUT 1 (B5) / THRESHOLD (>) = 50.00%"
- 4. Enter TRUE into "DIGITAL OUTPUTS / DIGOUT 1 (B5) / MODULUS = TRUE"

The output will become HIGH or TRUE when the speed feedback is greater than 50% in either direction.

10.15.3.3 Inputs

Before any Input can be reassigned the configure enable flag must be enabled. This disconnects all the inputs from the block diagram to prevent incorrect data being written while the tags are being changed.

10.15.3.4 Analog Inputs

These can be connected to a subset of parameters, defined in appendix A. Each input has a scalar and a pair of clamps associated with it.

Example 1 Connecting Field Setpoint to Analog Input 2

- 1. Set CONFIGURE I/O CONFIGURE ENABLE = ENABLE
- 2. Find the tag number associated with Field Setpoint.
- 3. Enter 171 in " ANIN 1 (A2) / DESTINATION TAG = 171"
- 4. Set Calibration to 1.0000
- 5. Set MAX CLAMP to 100.00 %
- 6. Set MIN CLAMP to 10.00 %
- 7. Set CONFIGURE I/O CONFIGURE ENABLE = DISABLE
- 8. Analog Input 1 now controls the field setpoint at 100% for 10v and clamped at 10% for 1v.

10.15.3.5 Digital Inputs

These can be connected to the same subset of parameters as analog inputs. IF digital input is HIGH

destination TAG = VALUE FOR TRUE

ELSE IF digital input is LOW destination TAG = VALUE FOR FALSE

Example 1 Connecting Digital Input 1 to speed loop Prop Gain

- 1. Set CONFIGURE I/O CONFIGURE ENABLE = ENABLE
- 2. Find the tag number associated with speed loop Prop. Gain
- 3. Enter 114 in "DIGIN 1 (C6) / DESTINATION TAG = 14"
- 4. Set VALUE FOR TRUE = 10.00
- 5. Set VALUE FOR FALSE = 30.00
- 6. Set CONFIGURE I/O CONFIGURE ENABLE = DISABLE
- 7. When Digital Input 1 is high the speed loop prop gain is set to 10.00 when the input is low the speed loop prop gain is set to 30.00

11 SERIAL COMMUNICATIONS

OVERVIEW

General Description

Supervision and monitoring of SSD 590 Series drives has been made simple by the provision of a supervisory communications interface. This option provides a serial data port that can be installed on each drive. These RS422/RS485 links can be bussed together to allow an intelligent device to monitor or update the parameters of a network of drives.

The 590 supports both ASCII and Binary Communications.

Using this link a supervisory control system can be implemented where each drive is in continuous local control and the central computer is only to perform periodic setpoint updating, control sequencing and data collection.

The main advantages of this type of control system are:-

- a. Multi-wire analogue transmission from a central programmable controller is replaced by a bussed digital system using serial data transmission over twisted pair wire links. This reduces cabling costs.
- b. Digital transmission is fundamentally less noise-prone than analogue methods, and the accuracy of the transmitted data is unaffected by the transmission medium. The use of intelligent devices at either end of the data link allows error checking to be used. This virtually eliminates the effects of electrical noise on data integrity. It is therefore possible to issue setpoints to drives with much higher accuracy using this method.
- c. The communication standard used allows up to 16 drives to be connected to a single link which can be driven from a computer serial port. Additional drives can be readily accommodated through additional ports. Most computers are equipped with RS232 serial ports which can be easily converted to accommodate the RS422 standard. Modules are available from SSD to make this conversion.
- d. The chosen standard and protocol are compatible with other Eurotherm group products. Temperature controls, process controls, data loggers, and drives can communicate easily with a common supervisory system.

The communications protocol employed by the Eurotherm group instruments, including SSD drives, comes under the heading of Binary Synchronous Communications Data Link Control (BSCDLC). The specific form of communication implemented corresponds with the following full American National Standard definition:-

ANSI standard: x3.28

Revision: 1976

Establishment and Termination Control Procedures Sub-category 2.5:

Two-way Alternate, Nonswitched Multipoint with Centralised Operation and Fast Select.

Message Transfer Control Procedure Sub-category B1:

Message Associated Blocking, with Longitudinal Checking and Single Acknowledgment.

This is known by the abbreviation:

ANSI - x3.28 - 2.5 - B1.

This is all part of an internationally recognized ANSI standard protocol called BISYNCH (Binary Synchronous) and known by the abbreviation x3.28. This is widely used by manufacturers of computers, computer peripherals, and communications equipment.

11..1 ASCII COMMUNICATIONS

Multi Drop Supervisory Link

Transmission Standard	: RS485(RS422)(bi-directional)
Protocol	: ANSI-X3.28-2.5-B1
Data Rates	: 300,600,1200,2400,4800, 9600 or 19200 baud
Character Format (300 to 9600 baud) Parity	: ASCII + 1 start, 1 parity and 1 stop bit. [10 BIT] : Even

Digital Communications

	RS422	RS485	
Electrical Connections	4-wire differential	4-wire differential	
No. of drivers and receivers allowed per line	1 driver 16 receivers	32 drivers 32 receivers	
Maximum cable length	4000ft/1200 metres		

11..1.1 Explanation of Terms

ASCII (American Standard Code for Information Interchange)

ASCII is a binary code which represents letters, digits, and control signals (collectively called characters). The code originated by the American National Standards Institute (ANSI) has become a world-wide standard for information interchange. The code uses a seven bit binary word to represent all the letters, digits, punctuation marks and control signals, a complete list of these codes being given at the end of the section.

Protocol

The Protocol defines the string or sequence of characters called a message which must be sent between communicating instruments to produce specific responses. The sequence of characters usually comprises control characters, instrument address, parameter mnemonic and data.

Control Characters

Control Characters are ASCII binary codes which define actions rather than information. Six ASCII codes are used:-

ASCII-HEX

02	(STX)	Start of Text
03	(ETX)	End of Text
04	(EOT)	End of Transmission
05	(ENQ)	Enquiry
06	(ACK)	Positive Acknowledge
15	(NAK)	Negative Acknowledge

Instrument Address

The 590 or associated Eurotherm Instrument has an address, the first digit being the "group" number (GID) in the range 0 to F, the second a "unit" number (UID) in the range 0 to F. There are therefore 256 different addresses from 00 to FF.

Parameter Mnemonic

Each Eurotherm instrument has a number of parameters defined within its program structure, each parameter is specified by a two character Mnemonic. Information is exchanged between instruments by use of these Mnemonics.

Examples are:-

10 the analogue input 1 OF the instrument health word 09 the drive speed demand

Full tables of the 590 mnemonics are given in Serial Link Mnemonics and Parameter Number Allocation Section.

Data

Data can be considered to consist of two types:-

i) Numerical Data:-

Where the parameter refers to number which is a level, setpoint, gain or result within the instrument being either positive or negative. ii) Boolean Data:- Where a Boolean parameter such as a switch can be monitored enabled, or disabled from the serial link.

iii) Status Information:- Where the parameter refers to a binary word each bit within the word being a significant switch within the program structure:-

Examples of numerical data are:-

23, speedloop error a number in the range \pm 100.00% 0B, current demand a number in the range \pm 200.00% 22, Digital tach a number in the range \pm 3000 RPM

Examples of status information are:-

OF health word:-	bit 1 represents the missing pulse alarm bit 9 three phase present bit 13 current trip alarm

Full information on the data types and the status words is contained in Serial Link Mnemonics and Parameter Number Allocation Section.

Data Format

The 590 uses an ASCII free format mode of operation for data transfer to make it easy to implement with languages such as BASIC, PASCAL, FORTRAN and assembler languages. This makes it easy to implement a simple supervisory system using an IBM PC.

Numerical Data (Format 21 - Free Format Numeric)

Numerical Data is transferred by transmission of a string of characters, the length of the string required to transmit the data value is determined by the value itself, no leading zeros are added to pad out the string length, and trailing zeros may be omitted.

i.e.	1	can be sent as	1.00, 1.0, 1. or 1
	-2.2	can be sent as	-2.20 or -2.2
	19.99	is sent as	19.99

Status Information (Format 23 - Hexadecimal)

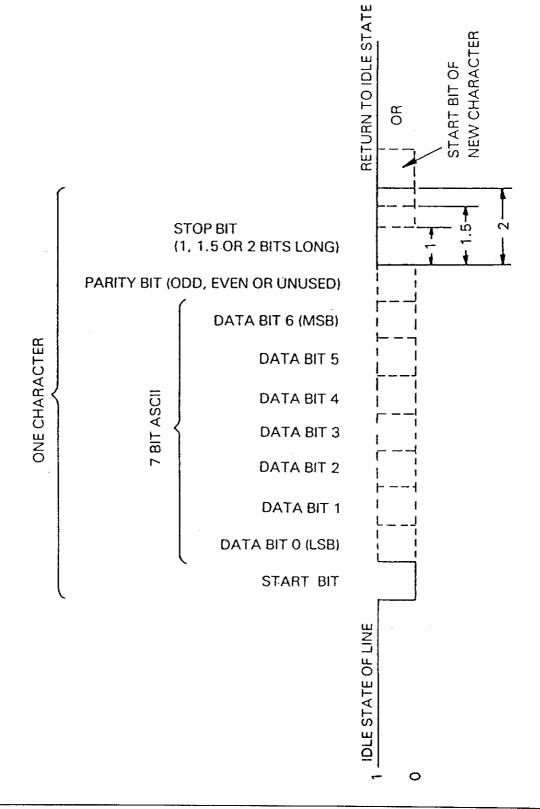
Status Information is transmitted by first encoding the data into a hexadecimal format. The length of the string is then determined by the number of characters in the encoded data. The hexadecimal data is preceded by a '>' sign to differentiate from numerical data.

Note:- Hexadecimal refers to the common practice of counting to the base of 16 in computing rather than the base of 10. The sixteen numbers used being 0 to 9, A to F. Thus an 8 bit byte is represented by two characters in the range 00 to FF, while a 16 bit word is represented by four characters in the range 0000 to FFFF.

Data Transfer Sequence

The data transfer sequence in the ASCII mode offers the following facilities:-

i) Asking questions (Known as polling)


- a. Single parameter poll
- b. Continuous polling of one parameter
- c. Sequential polling down the parameter list (fast polling)

ii) Setting parameters (known as selection)

- a. Single parameter update
- b. Continuous updating of one or more individual parameters

Serial Data Transmission

When an ASCII character is sent by means of serial data transmission the Bit pattern is transmitted in a fixed order the start and finish of that pattern being indicated by the transmission of signal levels called the start and the stop bits. The seven bit ASCII code is usually extended by one bit called the parity bit which indicates whether the total number of bits in each character code is odd or even. Eurotherm Protocol requires that the parity bit indicates even parity, i.e. it is set if the number of bits set in an ASCII character is odd. The serial data pattern also allows the use of multiple stop bits however Eurotherm Protocol dictates that there is only one stop bit if the data rate is greater than 110 baud, 590 instruments use 300 to 9600 baud.

SERIAL COMMUNICATIONS

590 Manual

11..1.2 Sequence to Read Information from the 590 by Computer

<u>Enquiry</u>

The computer initially has master status, with the 590 in slave status and begins by transmitting a message, known as the "establish connection" message, which is represented by the following format:-

(EOT) (GID) (GID) (UID) (UID) (CI) (C2) (ENQ)

These symbols are defined as follows:-

(EOT)	-	This control character resets all instruments on the link and causes them to examine the next four transmitted characters to see if they correspond with their group/unit address identifiers.
(GID)	-	These characters represent the required group address identifier, repeated for security.
(UID)	-	These characters represent the required unit address identifier, repeated for security. (Together these units define the address of a particular instrument). If, for example, GID $= 3$ and UID = 4, then the instrument to be addressed is number 34.
(C1)(C2)	-	These characters specify the parameter by mnemonic.
(ENQ)		This character indicates the end of the message, and that it is an enquiry.
The transmi	anian af th	

The transmission of this message initiates a response procedure from the 590.

Valid Response of the 590 to this Message

After the message has been sent, the computer adopts slave status and expects to receive a reply from the 590. In so doing, the 590 assumes Master status and providing the 590 has successfully received the message in full, it responds in the following form:-

(STX) (C1) (C2) (D1) (D2) (D3)....(DN) (ETX) (BCC)

which constitutes a message defined as thus:-

(STX)	-	start of text.
(C1)(C2)	-	parameter specified by mnemonic
(D1 to DN)	-	value of the requested parameter (string may be of any length as determined by the data). The 590 responds with the shortest message which represents the data value. If the data value is an integer (decimal part is 0), then it does not send a decimal point. Trailing zeros in the decimal part are not sent.
(ETX)	-	end of text
(BCC)		verification digit which is the character generated by taking the exclusive OR of the ASCII values of all the characters transmitted after and excluding (STX) up to and including (ETX).
		e.g. in a message with (D1 - DN) is 5 characters (BCC) = (C1) EOR (C2) EOR (D1) EOR (D2) EOR (D3) EOR (D4) EOR (D5) EOR (ETX)
		where $EOR = Exclusive OR$

The computer must check this (BCC) before accepting this reply as valid. Also the software must be able to extract the number from the data string taking into account the protocol of the data transmission.

NOTE: If the 590 receives the message but does not recognize the mnemonic it will respond with (EOT). The (EOT) hands back control to the computer.

Further Enquiry and Termination

The computer then assumes master status again and three options are available:-

i) Repeat Parameter Facility (NAK)

If the computer transmits a (NAK) after the valid reply, it causes the 590 to repeat the parameter that was just received. This allows continuous monitoring of the same parameter without having to re-establish the connection.

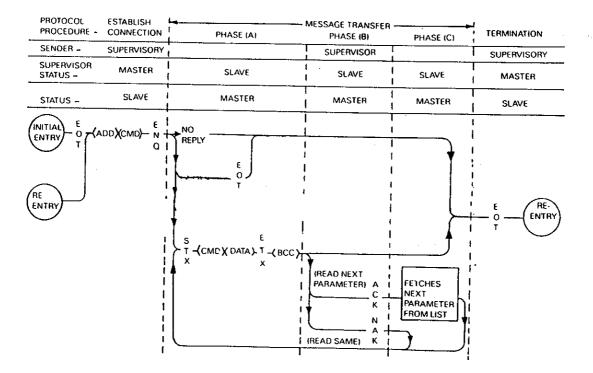
ii) Scroll Mode Facility (ACK)

If the computer transmits an (ACK) after a 'valid reply', it causes the 590 to fetch the next parameter from the parameter list. This facility enables the computer to continuously sequence through all the parameters of the 590.

 S_A

iii) Terminate Communication (EOT)

The termination procedure is entered when the selection of a particular instrument is no longer required or when a 590 does not respond to a message or replies with an (EOT) character. The computer assumes Master status and transmits an (EOT) character to enable all the instruments on the data link to be responsive to the next GID-UID address parameter.


No Response

Under certain circumstances the computer may not receive a response from the 590. This could be due to any of the following reasons:-

- i) Group/Unit address identifiers not recognized.
- ii) An error (e.g. parity) is found in one or more of the characters up to and including ENQ.
- iii) Communications loop failure perhaps due to noise or wrong baud rate being selected.
- iv) Hardware failure.

In these cases the computer should be programmed to "time-out", i.e. wait for a response for a short time (160msec minimum) before trying again.

POLL SEQUENCE FOR TRANSMITTING DATA FROM THE 590 CONTROLLER TO THE SUPERVISOR.

11..1.3 Sequence to Send information to the 590 from the Computer

Establish Connection

Connection is established with a particular 590 by sending				
(EOT) (GID) (UID) (UID) followed immediately by the data transfer				
		D1) (D2) (D3)(DN) (ETX) (BCC)		
(Note that the data transfer message is identical to that transmitted by a 590 when giving a "valid reply").				
The symbols	of this	message are defined as follows:-		
(STX)	-	start of text character		
(C1)(C2)	*	parameter specified by mnemonic		
(D1 to DN)	-	parameter value		
(ETX)	-	end of text character		
(BCC)	-	Block Check Character (verification check digit which is again the exclusive OR of (C1) to (ETX) inclusive and must be calculated by the computer before transmission).		

Responses

After transmission of the whole message, the 590 responds to it by sending (ACK), (NAK) or by giving no reply.

i) Positive acknowledgement (ACK)

When the 590 has received the message, it performs the following tasks:-

Checks for any parity errors in the message. If none then it ...

Verifies that the (BCC) character corresponds to the data pattern received. If no error then it... Verifies that the (C1), (C2) command characters are a valid mnemonic that may be written to. If so then it...

Verifies that the data (D1 to DN) is valid and not out-of-range*. If so then it ...

Updates the selected parameter with the new value contained in the message.

Only when all these tasks have been successfully completed does the 590 send the (ACK) response to the computer. This signifies that the message was correctly received and implemented.

ii) Negative acknowledgement (NAK)

If the message fails any of the above checks, the 590 sends (NAK) response to the computer. This signifies that the message received by the 590 contained an error and accordingly it has not updated the selected parameter. One possible reason is the incorrect calculation of (BCC). At this point, the selected command may be repeated by sending the data transfer string without re-establishing connection, until the (ACK) response is received by the computer.

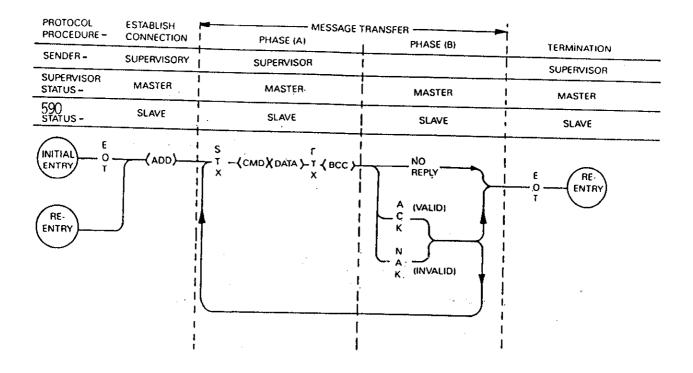
- * Data out-of-range returns NAK and is discarded.
- iii) No Reply

Under certain circumstances, the computer may not receive a response from the 590. This could be due to any of the following reasons:-

Group/Unit address identifiers not recognized.

An error (e.g. parity) is found in one or more of the characters up to and including (BCC).

Communications loop failure perhaps due to noise or wrong baud rate selected.


Hardware failure.

In these cases the computer should be programmed to 'time-out', i.e. wait for a response for a short time (160ms minimum) before trying again.

Termination

The termination procedure is used if the computer wishes to stop selecting a particular 590 and establish connection with another. This is achieved by sending the 'establish connection' sequence. The computer retains Master status and transmits an (EOT) character to reset all instruments on the data link to be responsive to the next GID-UID address parameter.

SELECTION SEQUENCE FOR TRANSMITTING DATA FROM THE SUPERVISOR TO THE 590 CONTROLLER

11.2 BINARY COMMUNICATIONS

This mode has many similarities with the ASCII mode. This document mainly concentrates on presenting those parts which are different from the ASCII mode.

11.2.1 Specifications

a. Character Format:

Each byte is transmitted as 11 bits rather than adapting the 10-bit format used by the ASCII mode. This is because of using a control bit which is cleared in control characters, and set in data characters. The format is represented by the following:-

- 1Start bit (lo)7Data bits (LSB first)1Control bit *1Even parity bit1Stop bit (hi)
- 0 =Control character 1 =Data character

*

b. The Message:

The message received from the supervisor can be in any of several modes. They can be divided into two categories, the first is the "main messages", and the second is the "continuation messages". Before presenting the format of these messages, the following gives the symbols they use. These symbols are divided into two parts, they are "control characters" and "data characters".

11.2.2 Control Characters

(EOT)	:	It indicates the end of transmission. It therefore clears the line and is sent by the master at the start of a new message.
(STX)	:	This is the start of text character.
(ENQ)	:	This is the enquiry character. It is sent by the master as the last character of any type of a polling message.
(ETX)	:	This is the end of text character. It is followed by another character containing the checksum.
(ETB)	:	This is the end of block character. It is sent by the 590 drive instead of the (ETX) when it wishes to reply to a multi parameter enquiry. The (ETB) indicates the end of a block, but not the end of a message. Each block contains information on up to eight parameters. The (ETB) is used in replies to enquiry polling and multi-parameter polling (these are explained below).
(ACK)	:	This is the positive acknowledgement character.
(NAK)	:	This is the negative acknowledgement character.

11.2.3 Data Characters

(INO)	:	This is the instrument number. It contains the address of the slave drive and is equivalent to the combination of the GID, UID characters of the ASCII mode.
(PNO)	:	This is the parameter number. It is equivalent to the combination of the C1 and C2 characters of the ASCII mode and is sent as a hexadecimal number rather than two ASCII characters.
(D1), (D2) and (D3)	:	These three characters contain both the value and the mode number. The format is explained in section (c) below.
(CCC)	:	This is the connection check control character. It contains the checksum of all the characters following the (EOT) character in the message.
(BCC)	:	Verification digit which is the character generated by taking the exclusive OR of the ASCII values of all character transmitted after and excluding (STX) up to and including (ETX)

11.2.4 Types of Messages

As described above there are two types of message they are:-

a. Main Messages:

The main messages are in four types, these are:-

1. Selection:

The supervisor writes to one parameter.

(EOT) (INO) (CCC) (STX) (PNO) (D1) (D2) (D3) (ETX) (BCC) where the (BCC) character contains the checksum of all characters following the (STX).

2. Polling:

The supervisor requests to read the value of one parameter.

(EOT) (INO) (PNO) (CCC) (ENQ)

3. Enquiry Polling:

The supervisor requests to read all those parameters in block 1 that have changed since the last read by an amount greater than or equal to changeband (PNO 4).

(EOT) (INO) (CCC) (ENQ)

4. Multi-parameter polling:

The supervisor requests to read a given number of parameters. That number is referred to as the count number ("CNO"), it is included in the request message and the reply will be sent by the drive, in blocks of up to 8 parameters.

(EOT) (INO) (PNO) (CNO) (CCC) (ENQ)

Note that the CCC is the checksum of the characters following an (EOT) and is therefore equal to (INO) in selection and enquiry-polling messages.

If PNO is the first in a block (i.e. 0, 8, 16, etc.) and CNO = 8, then a pseudo - enquiry poll is performed on the block, controlled by PNO 7. Section 11.3.2 gives details.

b. Continuation messages:

In addition to the above, there are two types of continuation messages (sent by the supervisor). These are:

 1. Next
 : (send next item from a list)

 Only valid if sent following a multi-parameter poll.

(ACK)

2. Repeat : (repeat last reply)
 Only valid if sent following any type of poll. It requests a repetition of the previous reply. (NAK)

c. Data Format:

Data values are presented in three consecutive characters, D1, D2 and D3. These characters include the mode name as well as the value read from or to be written to one of the parameters. A data character is represented by setting its MSB (bit 7). The contents of these characters are as follows:-

DI:	bits $2 \rightarrow 6$: mode number	
		Number format is:	
		0 = XXXX	
		1 = XXX.X	
		2 = XX.XX	
		3 = X.XXX	
		4 = .XXXX	
	bits 0 and 1	: bits 14 and 15 of the value.	
D2:	bits $0 \rightarrow 6$: bits 7 to 13 of the value.	
D3:	bits $0 \rightarrow 6$: bits 0 to 6 of the value.	

d. Baud Rate:

This can be any of seven values, these are: 300, 600, 1200, 2400, 4800, 9600, 19200 baud

11.2.5 Serial Transmission

During serial communications, the 590 drive acts as a slave and replies to messages sent from a supervisor. It responds by transmitting a reply which can be one of two types:

a. one character:

It can be one of the following:-

1. (ACK)	:	sent after the correct reception of a selection message.
2. (NAK) or (EOT)	:	in case of detecting a fault.

b. more than one character:

This is the case when sending a reply to any type of a polling message. The reply is in the form:

(STX) (PNO) (D1) (D2) (D3) (ETX) (BCC)

In case of multi-parameter polling, the reply can consist of more than one message. Such a reply is divided into a group of messages (blocks). The (ETX) character is only sent at the end of the last message. In other messages, the (ETX) is replaced by an (ETB) to indicate an end of a block rather than the end of reply, as explained earlier.

11.3 SERIAL LINK MNEMONICS AND PARAMETER NUMBER ALLOCATION

11.3.1 Eurotherm Group Standard Parameters

Each of the Eurotherm Group instruments which support ASCII protocol contains a minimum set of parameters. These are known as the Prime Set and allow access to the following:-

Mnemonic	Description	Access	Function				
BL	Buffer length	R/O	Returns 4646_{16} indicating that both transmit and receive buffers are 46_{16} bytes long.				
CI	Configuration Information	R/O	Returns $4CCC_{16}$ indicating that the drive supports both fixed and variable length data formats, and that the drive is a single-function device.				
EE	Error report	R/W	Returns one of the following to indicate the status of seriallink transmissions :00C0No errors01C7Unknown mnemonic02C2Block check character fail03C1Parity error on received data03C2Framing or overrun error05C8Attempt to write to a read-only mnemonic07C7Invalid message format08C8Value in selection message out of range.Writing any value to mnemonic EE resets it to 00C0.				
II	Instrument Identifier	R/W	Returns the value of a parameter, the default value of which is 5900.				
MN	Mode Number	R/O	Returns a fixed value 08C1 (the full Eurotherm standard is not supported).				
VO	Version Number	R/O	Returns the issue number in the upper two characters, and the release number in the lower two characters. For example issue 2.4 returns 0204.				

In addition to the Prime Set, each drive or instrument supports an application set of parameters to allow fast access to commonly required variables such as:-

a. Process variables.

b. Setpoints.

c. PI gains.

All parameters can be found by polling the instrument identifier parameter and then sequentially polling until the instrument identifier parameter is repeated. This will result in a circular list that contains all supported by the instrument.

11.3.2 Mnemonic Tables

Block 0: (Binary Protocol Only)

PNO	Access		D	escription					
0	R/O	Instrument Ide	entifier. Same as ASCII	mnemonic II.					
1	R/W	Error report. S	ame as ASCII mnemon	ic EE					
2		Reserved							
3		Reserved							
4	R/W	reported. Hyst For example, if	eresis is measured in the float 10° float 10	eudo-enquiry poll (see PNO 7), a value must or greater than the hysteresis before it will be e smallest units applicable to each parameter. parameter with one decimal point must change hal points must change by 0.10 before they will					
5	R/W	Serial link con	figuration.						
		Bit nos.		Description					
		0 - 3	Baud rate 1	0 = 300 $1 = 600$ $2 = 1200$ $3 = 2400$ $4 = 4800$ $5 = 9600 (default)$ $6 = 19200$					
		4 - 15	Reserved						
6		Reserved.							
7	R/W	Control word for multi-parameter polling. For the purpose of multi-parameter polling, the PNOs are arranged in 16 blocks of 8. Bit 0 of this parameter controls block 0 (PNO 0 to 7), bit 1 controls block 1 (PNO 8 to 15) bit 15 controls block 15 (PNO 120 to 127). When a bit is 1 (default), a multi-parameter poll on this block operates normally (2) When a bit is 0, a multi-parameter poll on this block with PNO = multiple of 8, and CNO = 8 performs an enquiry poll instead (a pseudo-enquiry poll).							

PNO Allocation

PNOs 0 to 7 (block 0) are defined on page 11 - 14. This section defines PNOs 8 to 127. The ASCII mnemonics are case sensitive, Parameters in Block 0 are undefined in ASCII mode.

NOTES:-

- - When writing to PNO5 in order to change baud rates, the 590 changes its baud rate after receiving the terminating EOT.
- 2 Refer to Bisync Manual HA

<u>Block 1 :</u>

PNO	ASCII mnemonic	Tag No.	Access	Bit number	ASCII data format	Binary data format	Limits	Description
8	08	063	R/O	-	21	xxx.xx	-	Speed Setpoint
9	09	089	R/O	-	21	xxx.xx	-	Speed Demand
10	0A	062	R/O	-	21	xxx.xx	_	Speed Feedback
11	0B	066	R/O	-	21	xxx.xx	-	Current Demand
12	0C	065	R/O	-	21	xxx.xx	-	Current Feedback
13	0D	183	R/O	-	21	XXX.XX	-	Field Demand
14	0E	181	R/O	-	21	xxx.xx	-	Field Feedback
15	0F	115	R/O	-	23	XXXXX	-	Health Word
		-		0			-	Over Speed
	1	-		1			-	Missing Pulse
	*	-		2			-	Field Over Current
		-		3			-	Fin Over Temperature
	-	-		4			-	Motor Over Temperature
	-	-		5			-	Over Volts
	-	-		6			-	Speed Feedback
	-	-		7			-	uTach Fail
				8			-	Field Fail
	-	-		9			-	Three Phase
	-	-		10			-	Phase Lock Loop
	<u>-</u>	-		11			-	P3 Port
	-	-		12			-	Stall Trip
		-		13			+	Over Current Trip
				14			-	Cal Card
	-	-		15			-	ACCTS Failed.

590 Manual

Block 2 :

PNO	ASCII mnemonic	Tag No.	Access	Bit number	ASCII data format	Binary data format	Limits	Description
16	10	050	R/O	-	21	xxx.xx	-	Analogue I/P 1
17	11	051	R/O	-	21	xxx.xx		Analogue I/P 2
18	12	052	R/O	-	21	xxx.xx		Analogue I/P 3
19	13	053	R/O	-	21	XXX.XX	-	Analogue I/P 4
20	14	054	R/O	*	21	xxx.xx	-	Analogue I/P 5
21	15	067	R/O	-	21	xxx.xx		Actual +ve Current Limit
22	16	061	R/O	-	21	xxx.xx	······································	Actual -ve Current Limit
23	17	040	R/O	-	23	xxxxx	-	
	<u>-</u>	068		0			-	Start Input
	-	069		1			-	Digital Input 2
	•	070		2			-	Enable Input
	•	071		3				Digital Input 4
	-	072		4			-	Digital Input 5
	-	073		5			-	Digital Input 6
	-	-		6			_	Program Stop Input
	-	-		7			-	Coast Stop Input
	-	074		8			-	Digital Output 1
	-	075		9			-	Digital Output 2
	-	076		10			-	Digital Output 3
,	-	-		11 - 15				Reserved

<u>Block 3 :</u>

PNO	ASCII mnemonic	Tag No.	Access	Bit number	ASCII data format	Binary data format	Limits	Description
24	18	030	R/W	-	21	XXX.XX	-200.00 +200.00	Additional Current Demand
25	19	015	R/W	-	21	XXX.XX	0 +200.00	Current Limit Scale
26	1A	087	R/O	-	21	XXX.XX	0 +200.00	+ve Current Clamp
27	1B	088	R/O	-	21	XXX.XX	0 +200.00	-ve Current Clamp
28	1C	016	R/W	-	21	xxx.xx	0 +200.00	Current Loop P Gain
29	1D	017	R/W	-	21	XXX.XX	0 +200.00	Current Loop I Gain
30	1E	171	R/W	-	21	XXX.XX	0 +100.00	Field Current Setpoint
31	1F	116	R/O	+	23	XXXXX		Health Store
		-		0				Over Speed
		-		1				Missing Pulse
·		-		2				Field Over Current
	-	-		3				Fin Over Temperature
	-	-		4				Over Temperature
	-	-		5				Field Over Volts
	-	-		6				Speed Feedback
	-	-		7				uTach Fail
	-	-		8				Field Fail
	-	-		9				Three Phase
	-	-		10				Phase Lock Loop
	-	-		11				P3 Port
	-	-		12				Stall Trip
	-	-		13				Over Current Trip
	-	-		14				Cal Card
	-	-		15				ACCTS Failed.

Block 4 :

PNO	ASCII mnemonic	Tag No,	Access	Bit number	ASCII data format	Binary data format	Limits	Description
32	20	060	R/O	-	21	XXX.XX	-	Armature Volts
33	21	058	R/O	-	21	xxx.xx	_	Analogue Tach
34	22	059	R/O	-	21	XXXXX		uTach
35	23	064	R/O	-	21	XXX.XX		Speed Error
36	24	132	R/W	-	21	x.xxxx	-3.0000 +3.0000	P3 Setpoint Ratio
37	25	014	R/W	-	21	XXX.XX	0 +200.00	Speed Loop P Gain
38	26	013	R/W	_	21	XXX.XX	1 +6000	Speed Loop Time Constant (mS)
39	27	-	-		23	XXXXX		
	-	161	R/W	0			$0 \rightarrow 1$	Aux Start
		168	R/W	1			$0 \rightarrow 1$	Aux Statt
	-		-	2 - 15				Reserved

Block 5 :

PNO	ASCII mnemonic	Tag No.	Access	Bit number	ASCII data format	Binary data format	Limits	Description
40	28	006	R/W	-	21	x.xxxx	-3.0000 +3.0000	Ratio 1
41	29	007	R/W	-	21	x.xxxx	-3.0000 +3.0000	Ratio 2
42	2A	086	R/O	-	21	XXX.XX	-	Set Point Sum Output
43	2B	002	R/W	-	21	xxx.x	0.1 600.0	Ramp Accel Time
44	2C	003	R/W	-	21	XXX.X	0.1 600.0	Ramp Decel Time
45	2D	085	R/O	-	21	XXX.XX	-	Ramp Output
46	2E.	041	R/W		21	XXX.XX	-100.00 +100.00	Additonal Speed Demand
47	2F	-	-		23	XXXXX		
		082	R/O	0				Drive Start
	-	084	R/O	1				Drive Enable
	-	122	R/O	2		<u> </u>	·····	Health Flag
	-	125	R/O	3			· · · · · · · · · · · · · · · · · · ·	Ready
	-	-	-	4 - 7	· · · · · · · · · · · · · · · · · · ·			Reserved
	-	079	R/O	8				At Standstill
	-		-	9 - 15			······································	Reserved

<u>Block 6 :</u>

PNO	ASCII mnemonic	Tag No.	Access	Bit number	ASCII data format	Binary data format	Limits	Description
48	30	026	R/W	-	21	XXX.X	0.1 600.0	N-Stop time
49	31	027	R/W	-	21	XXX.X	0.1 600.0	P-Stop time
50	32	091	R/W	-	21	x.xx	0 +200.00	P-Stop Current Limit
51	33	029	R/W	-	21	x.xx	0 +100.00	Stop Zero Speed Threshold
52	34	005	R/W	•	21	XXX.XX	-100.00 +100.00	Ramp Input
53	35	100	R/W	-	21	XXX,XX	-	Setpoint Sum Input 1
54	36	101 in Iss 1.6 309 in Iss 2.1	R/W	-	21	XXX.XX	-100.00 +100.00	Setpoint Sum Input 2 in Iss 1.6 Setpoint Sum Input 0 in Iss 2.1
55	37	~			23	XXXXX		
	-	94	R/W	0			$0 \rightarrow 1$	Aux Digital Output 1
·	-	95	R/W	1			$0 \rightarrow 1$	Aux Digital Output 1 Aux Digital Output 2
	-	96	R/W	2			$0 \rightarrow 1$	Aux Digital Output 3
<u> </u>		-		3 - 15				Reserved

Block 7 :

PNO	ASC11 mnemonic	Tag No.	Access	Bit number	ASCII data format	Binary data format	Limits	Description
56	38	055	R/O	-	21	XXX.XX	-	Analogue Output 1
57	39	056	R/O	-	21	XXX.XX		Analogue Output 1
58	3A	128	R/W	-	21	XXX.XX	-100.00 +100.00	Aux Analogue Output 1
59	3B	129	R/W	-	21	XXX.XX	-100.00 +100.00	Aux Analogue Output 2

<u>TABLE</u>

ASCII CODES

A	ASCII-HEX		
STX	-	Start of Text	02
ETX	~	End of Text	03
EOX		End of Transmission	04
ENQ	-	Enquiry	05
ACK		Positive Acknowledge	06
NAK	-	Negative Acknowledge	15
	-	Space	20
-	-	Minus Sign	
•	-	Decimal Point	2E
0			30
1			31
2 3			32
3			33
4 5 6			34
5			35
6			36
7			37
8 9			38
9			39
>	-	(greater than)	3E

HEX-ASCII TABLE complete list

00 NUL 01 SOH 02 STX 03 ETX 04 EOT 05 ENQ 06 ACK 07 BEL 08 BS 09 HT 0A LF 0B VT OC FF 0D CR 0E SO 0F SI 10 DLE 11 DC1(X-ON) 12 DC2 13 DC3(XOFF) 14 DC4	15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A	NAK SYN ETB CAN EM SUB ESC FS GS RS US space ! " £ \$ % & *	2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F	+ ,- ,/ 0 1 2 3 4 5 6 7 8 9 : ; < = > ?	40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55	@ABCDEFGHIJKLMNOOQRSTU	56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A	VWXYZ [/}^ , abcdefghij	6A 6B 6C 6D 6F 70 71 72 73 74 75 76 77 78 79 7A 78 79 7A 7B 7C 7D 7E 7F	k 1 m n o p q r s t u v w x y z { ! } TEL	
--	--	---	--	--	--	------------------------	--	-------------------------------	--	--	--

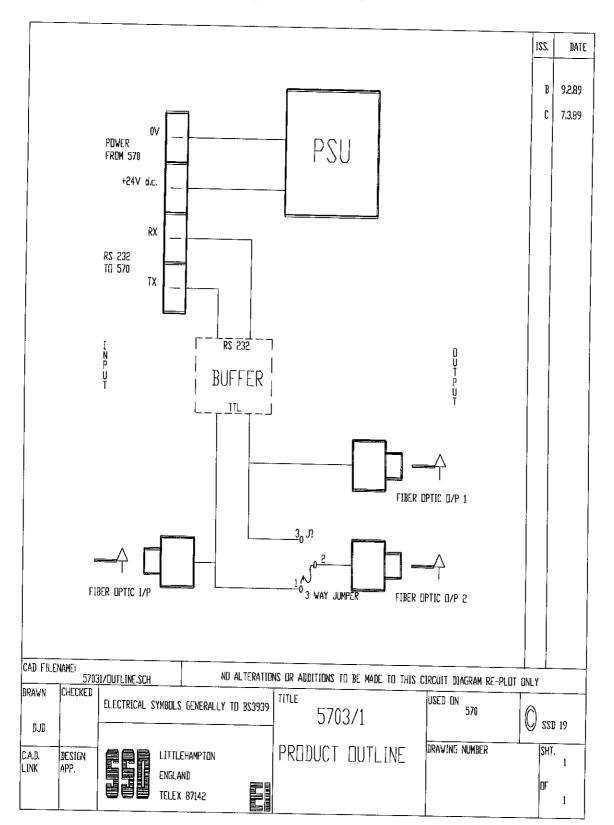
12 5703 SUPPORT

12.1 Overview

This unit provides the facility to run a line of drives in speed-lock without the use of a 5720 Quadraloc controller; for accurate speed-holding, encoder feedback is required. Ratioed speed-locking is supported, although the unit is not intended to supplant Quadraloc in applications requiring high accuracy.

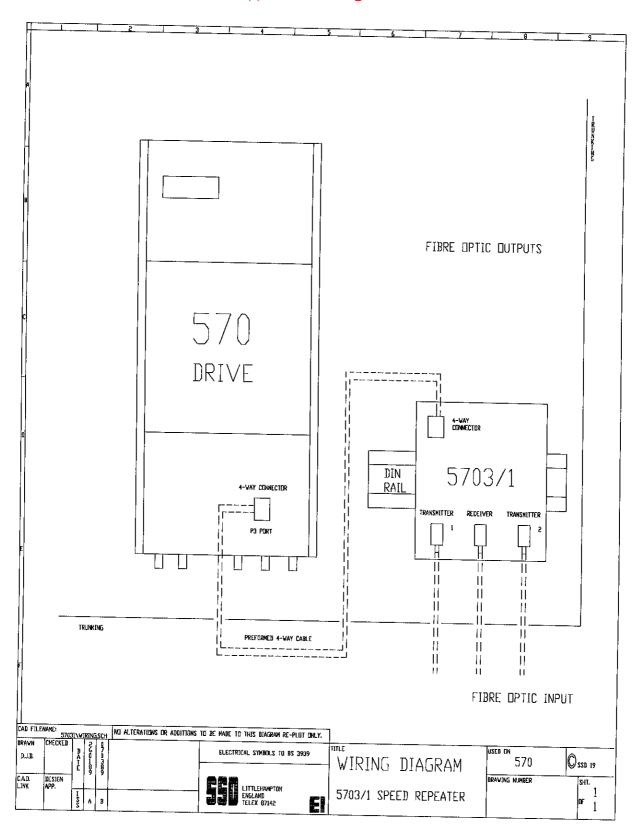
A 16-bit speed signal is passed between drives through a fibre-optic link and the 'P3' port on each 590 drive (a port otherwise used only off-line for the up- and down-load of EEPROM data). The port operates RS232 compatible signal levels, the 5703/1 converts these signal levels to fibre optic signals for transmission and from fibre optics to RS232 for reception.

12.2 Hardware Description


The 5703/1 is housed in a DIN rail mounted box and is provided with a "Ribbon" cable to connect into the P3 port. The ribbon cable is of a fixed maximum length of 400mm to limit transmission errors, the primary unit to unit interconnection is intended to be achieved by a fibre optic cable.

The 5703 unit itself is simply an electric signal to light converter as such it does not alter the signal in any way, this is achieved within the software data of the 590 converter.

The 5703 is fitted with one fibre optic receiver and two fibre optic transmitters, the fibre optic receiver has a fixed function to receive data from the "preceding" unit while on the transmitter sends data to the "following" unit. The additional transmitter can be used either to re-transmit the incoming signal or provide a second transmission of the output signal, this gives the unit wide functionality. When the link is in the normal right hand position, assuming the board is mounted with the fibre optics downward, the second transmitter repeats the output signal. In the left hand position it repeats the input signal.


The 5703/1 can be configured to point to any relevant parameter in the block diagram, the default connections are such that the scaled input is connected to the "additional speed demand" and the output to the "speed demand".

590 Manual

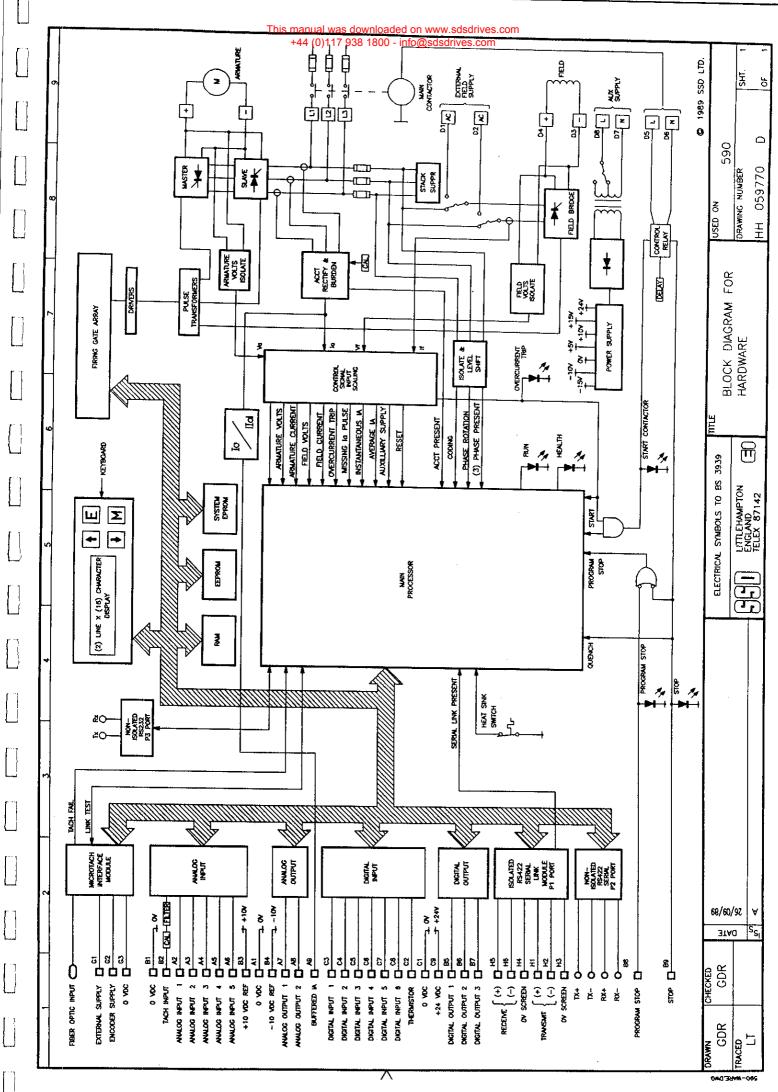
5703 SUPPORT

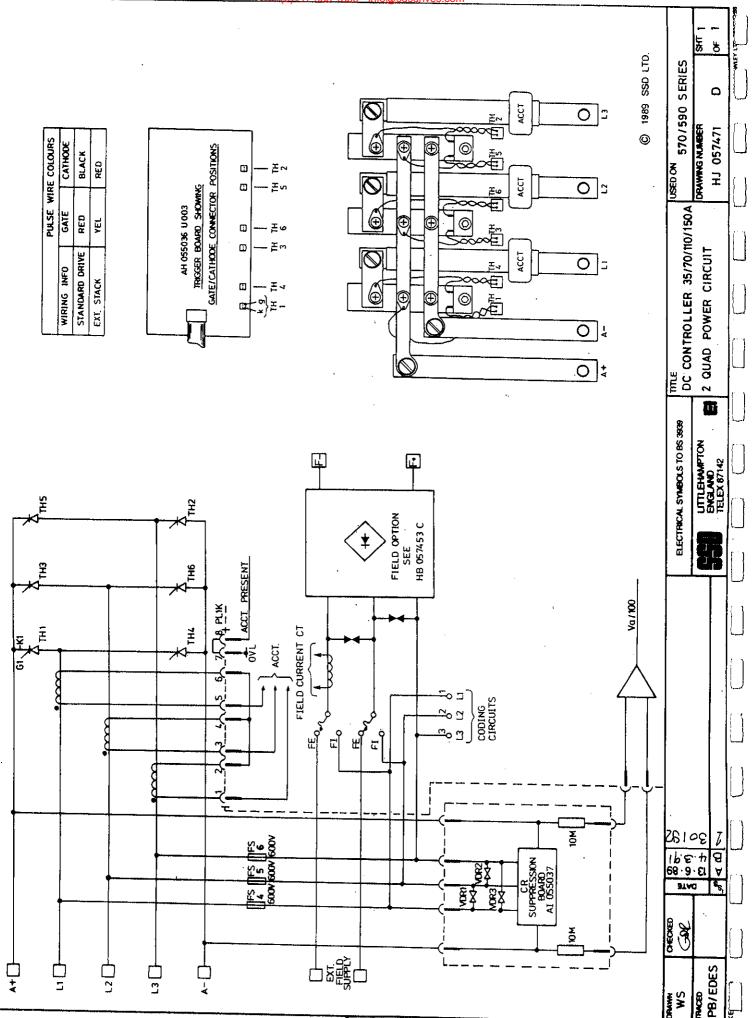
590 Manual

590 Manual

5703 SUPPORT

12.3 COMMISSIONING THE 5703/1

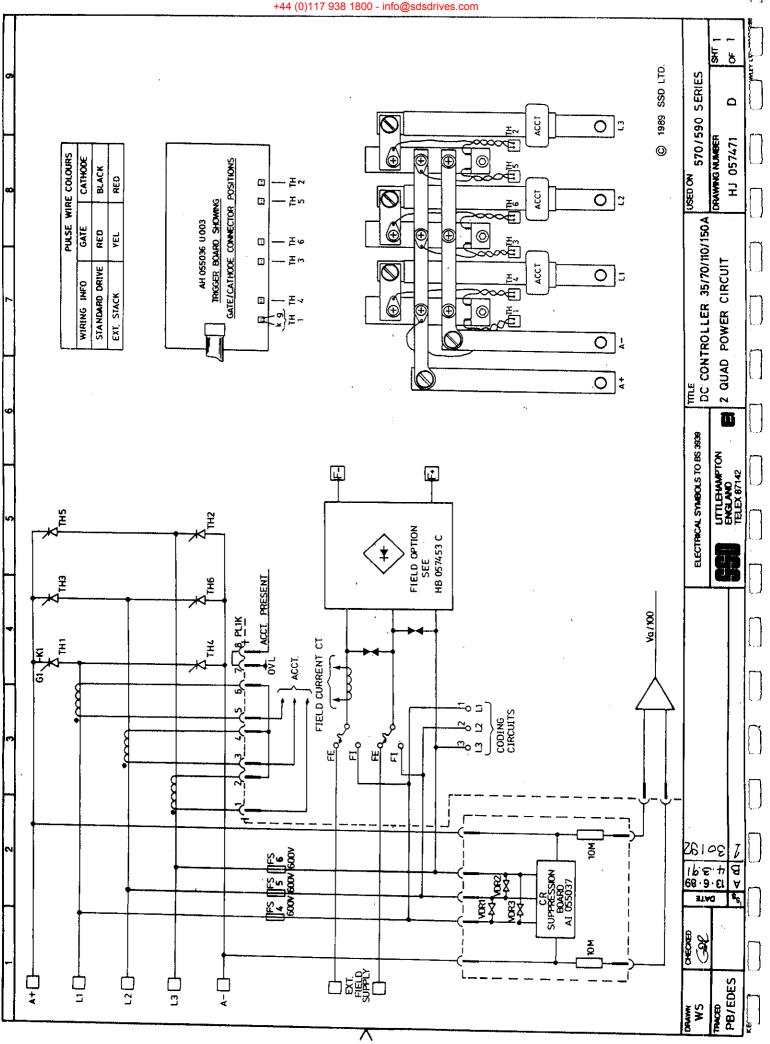

The configuration of the operation of the P3 port for 5703 support is carried out through the MMI at commissioning, and subsequently the RS422 serial link of the drive allows control over the scaling of the input by an operator-station or by a host processor. Please refer to the block diagram of the 590 Series drive (drawing number HH059769D) and to the block diagram of the 5703/1 function.


The Inputs of the Drive

The speed setpoint from the 5703/1 enters the drive via the P3 port and, after scaling, is added together with analogue inputs 1, 2 and 3 (ramped). IN BASIC TACHO-FOLLOWER MODE, ALL THE ANALOGUE INPUTS MUST BE DISABLED TO PREVENT LOSS OF ACCURACY, yet it may be necessary in some applications to provide analogue inputs for trim signals or inch setpoints:

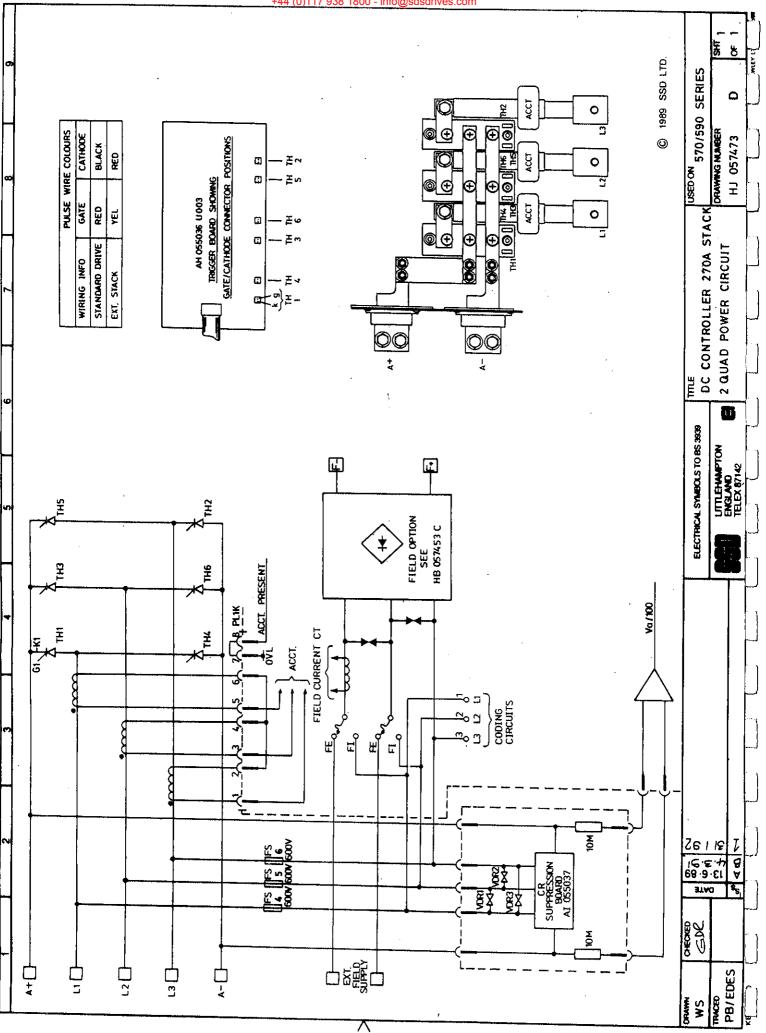
- i) The ramp input may be disabled by taking terminal C7 (Ramp Hold) permanently high; the ramp is automatically cleared when the drive is quenched, and its output will never move from (exactly) zero. The ramp input may often by of use in line master drives; but the ramp should be disabled in slave drives. Note that the P3 setpoint may be passed through the ramp function; in such a case, the analogue input to the ramp (terminal A4) is automatically disconnected.
- ii) Analogue input 1 (terminal A2) is used for inch setpoints. During normal running, the terminal is shorted to 0V and the deadband function is used so that no signal at all passes to the summing junction. The analogue inch setpoints are set a little above the threshold of the deadband so as to give the required inching speeds, forward or backward. Selection between analogue inching and absolutely zero analogue input is thus accomplished automatically.
- iii) Analogue input 2 (terminal A3) may be disabled by writing zero to its scaling block; this will normally be done through the MMI at commissioning, but may be overridden by the serial link. Alternatively, this input may be used for a local analogue trim.

5703 SUPPORT

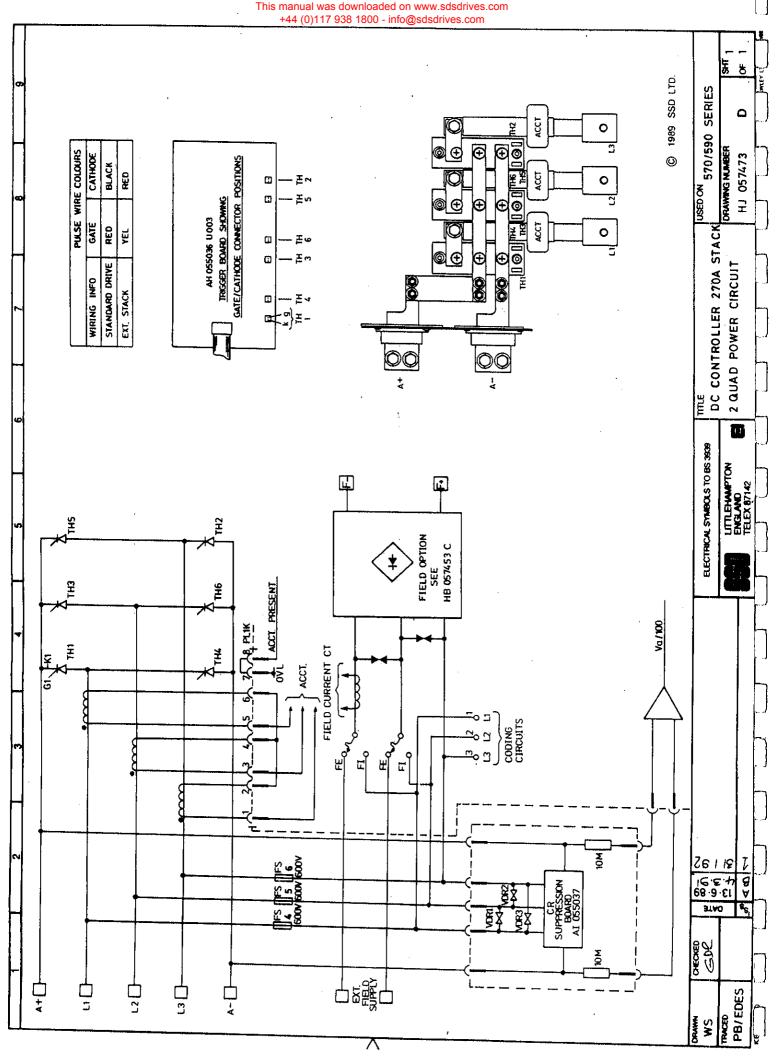

 $\overline{\Lambda}$

ļ ł

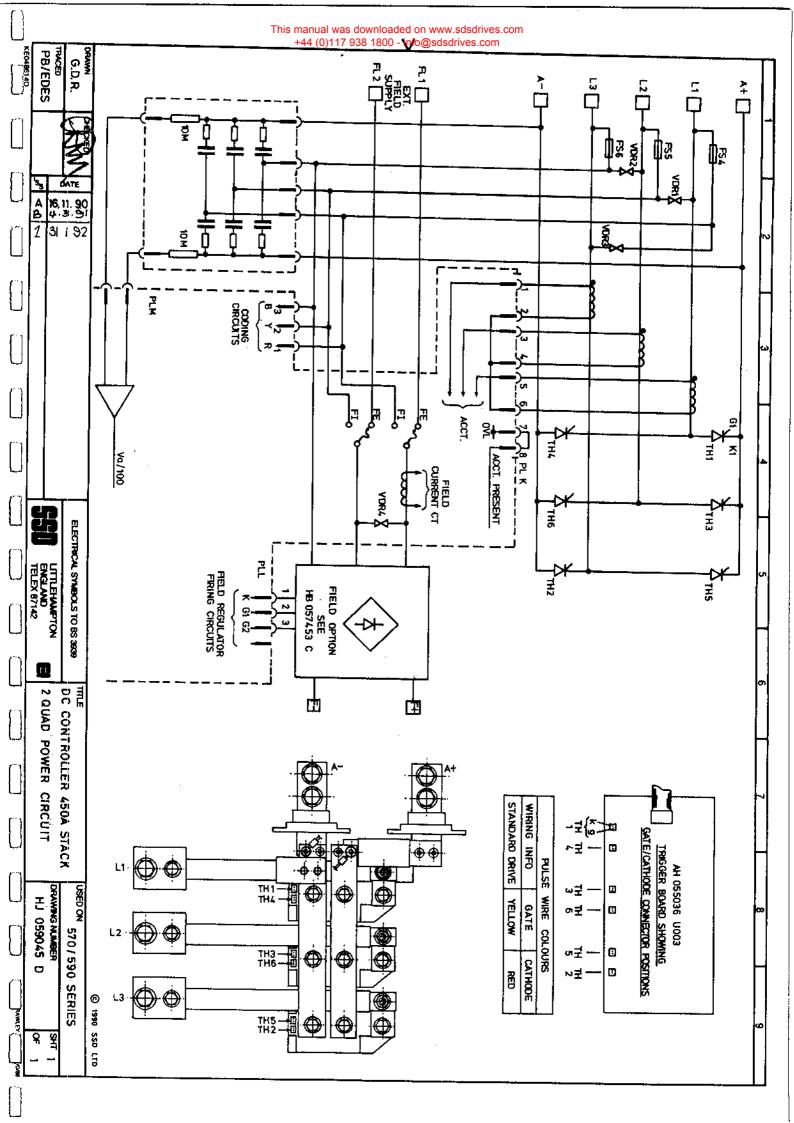
This manual was downloaded on www.sdsdrives.com .(0)117 938 1800 - info@sdsdrives.com

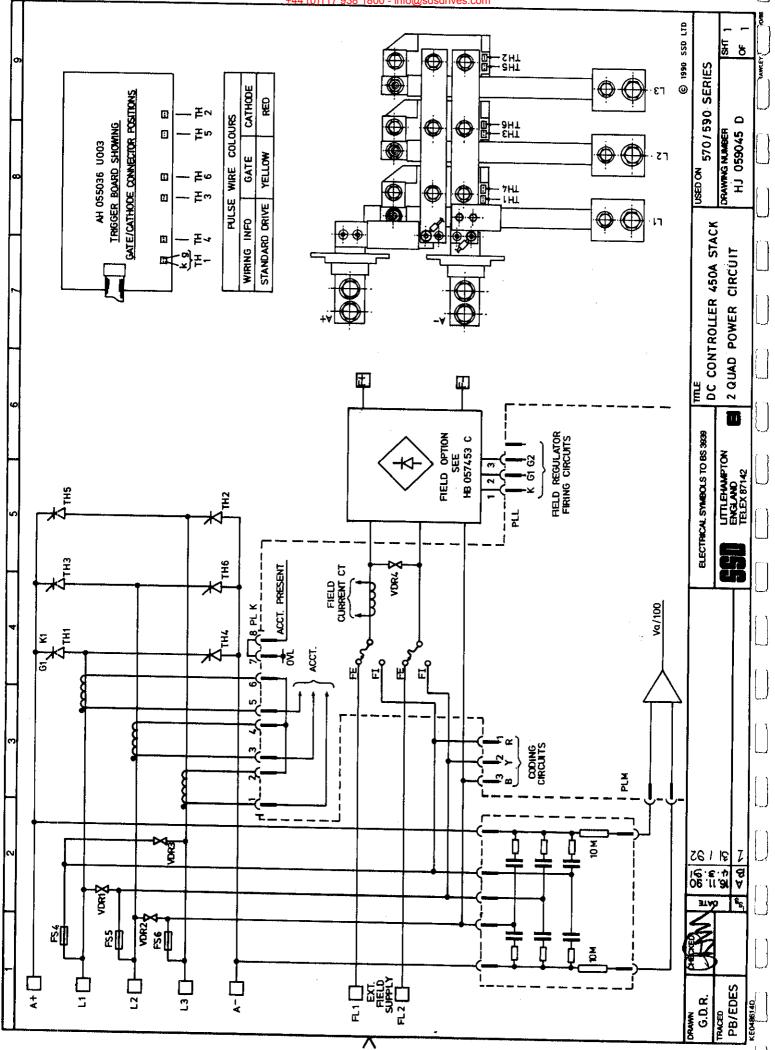

Å {]

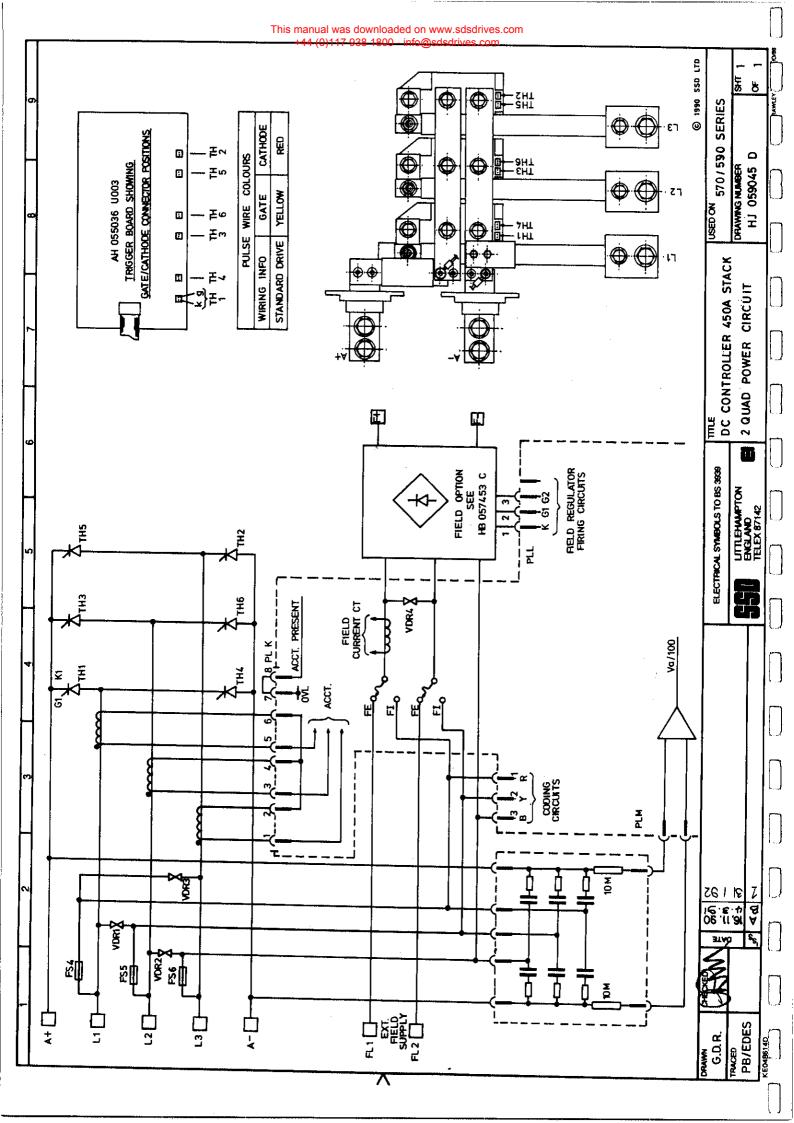
WS THACED

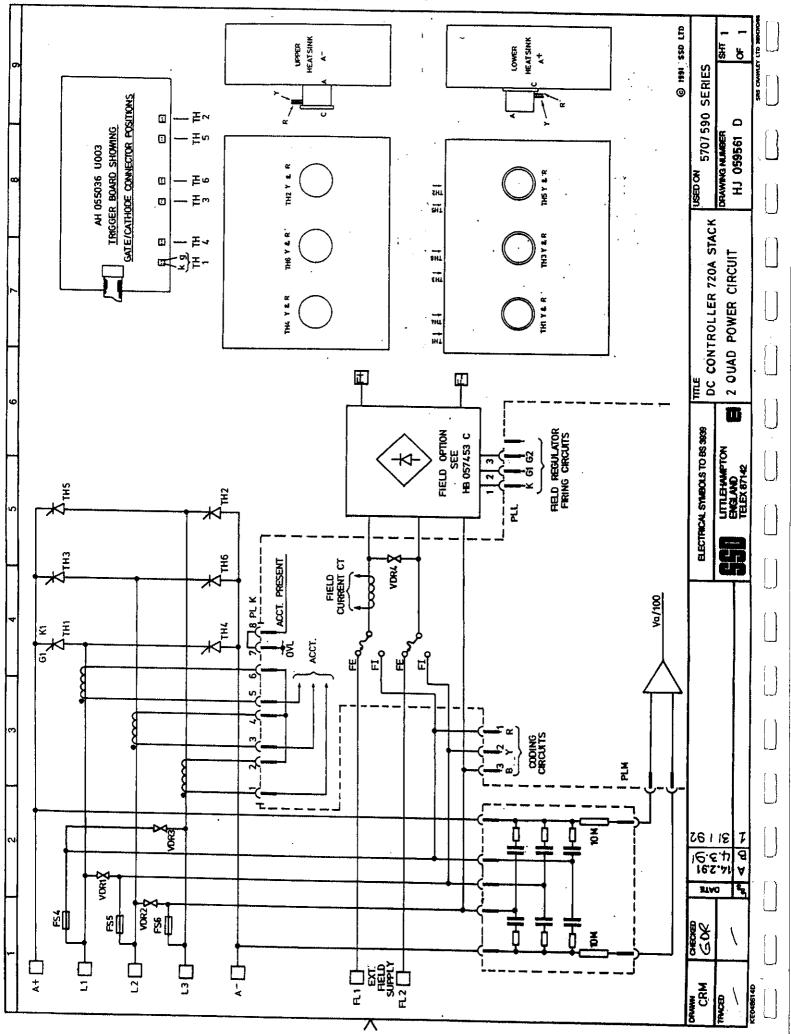

[]

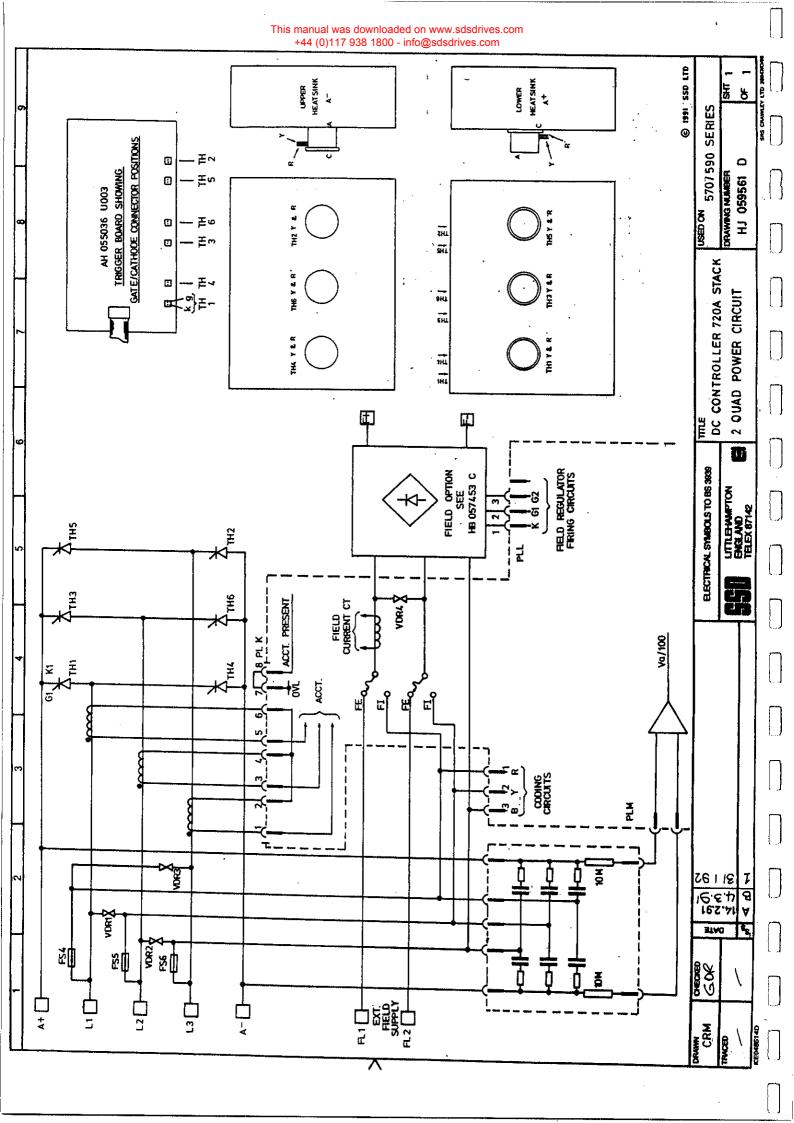
This manual was downloaded on www.sdsdrives.com +44 (0)117 938 1800 - info@sdsdrives.com

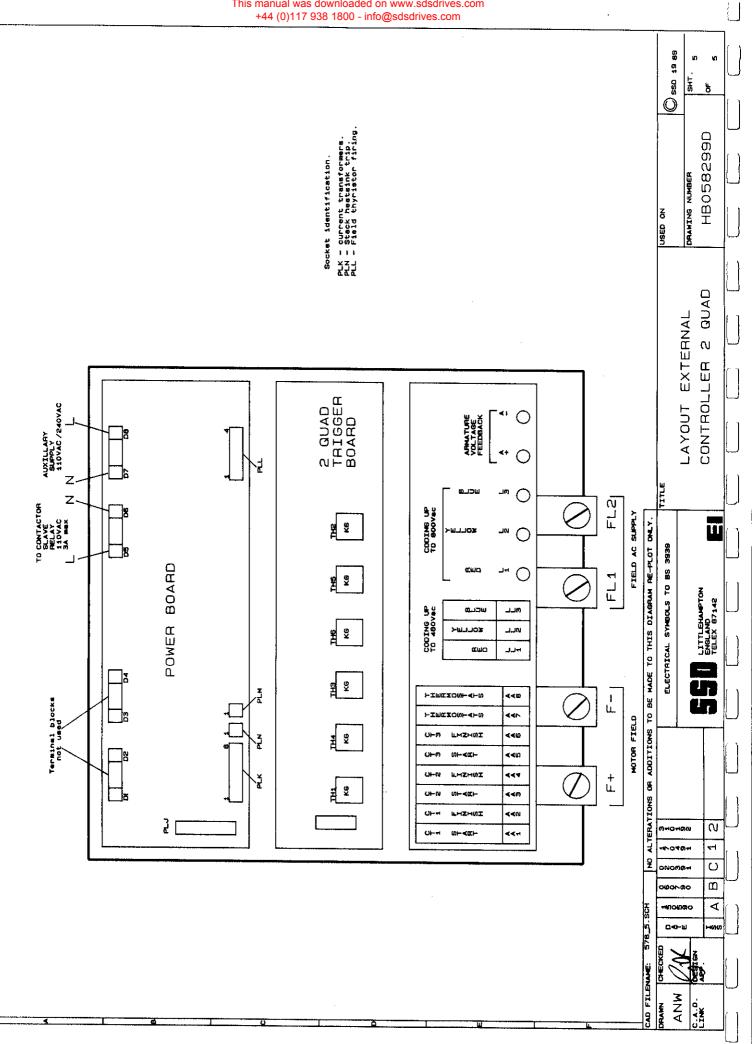


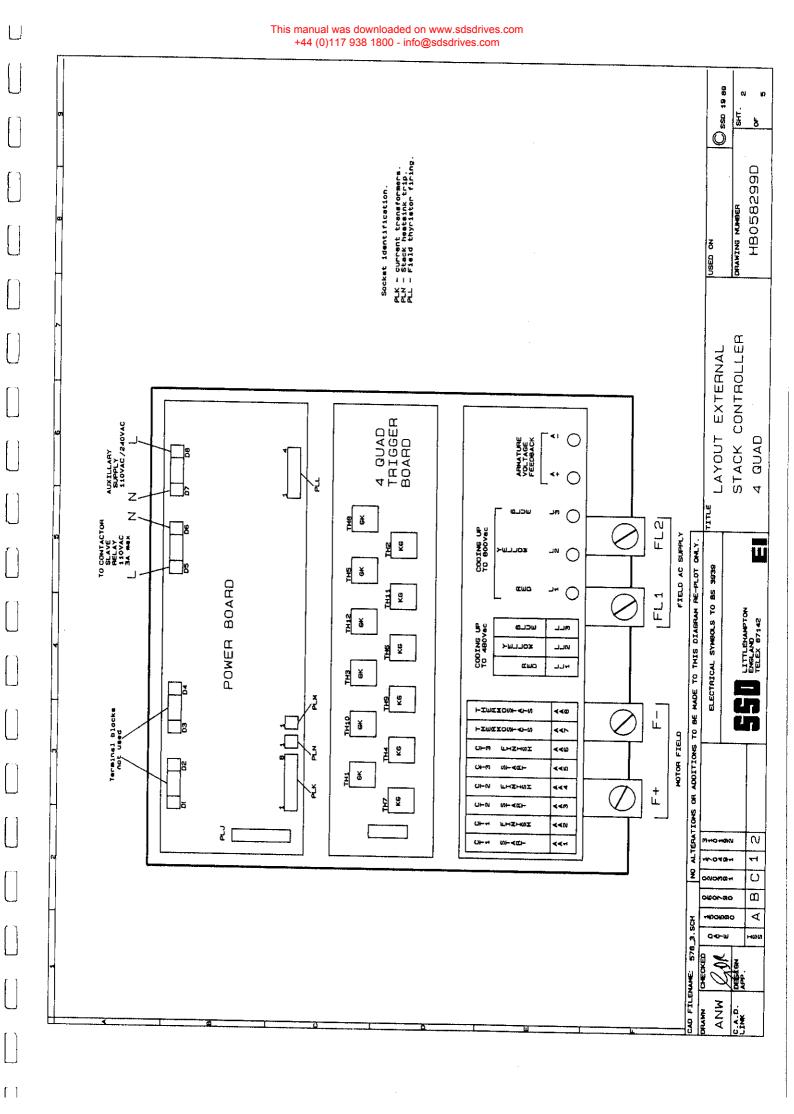

{ }

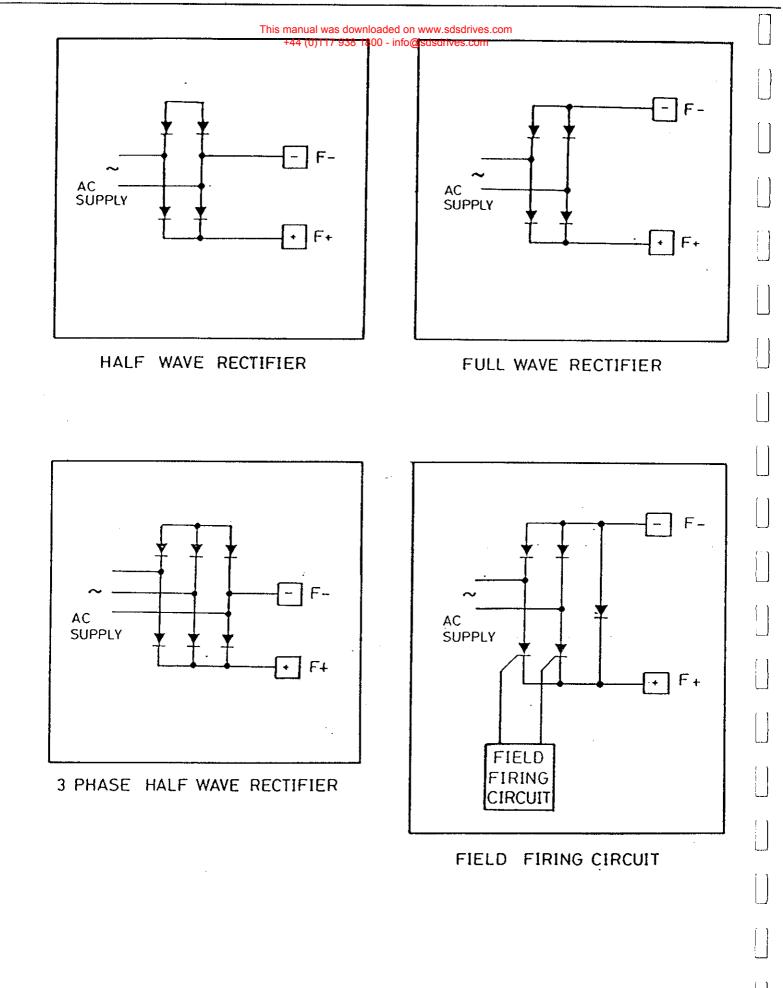

U

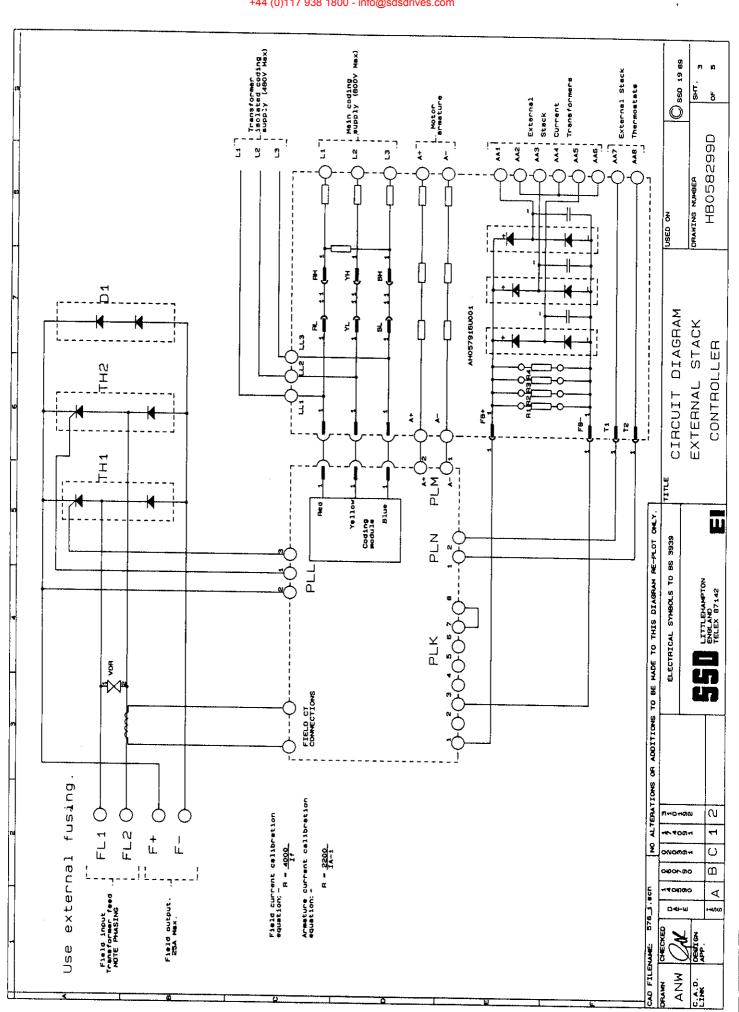



IJ









HB 057453 C

L____

r

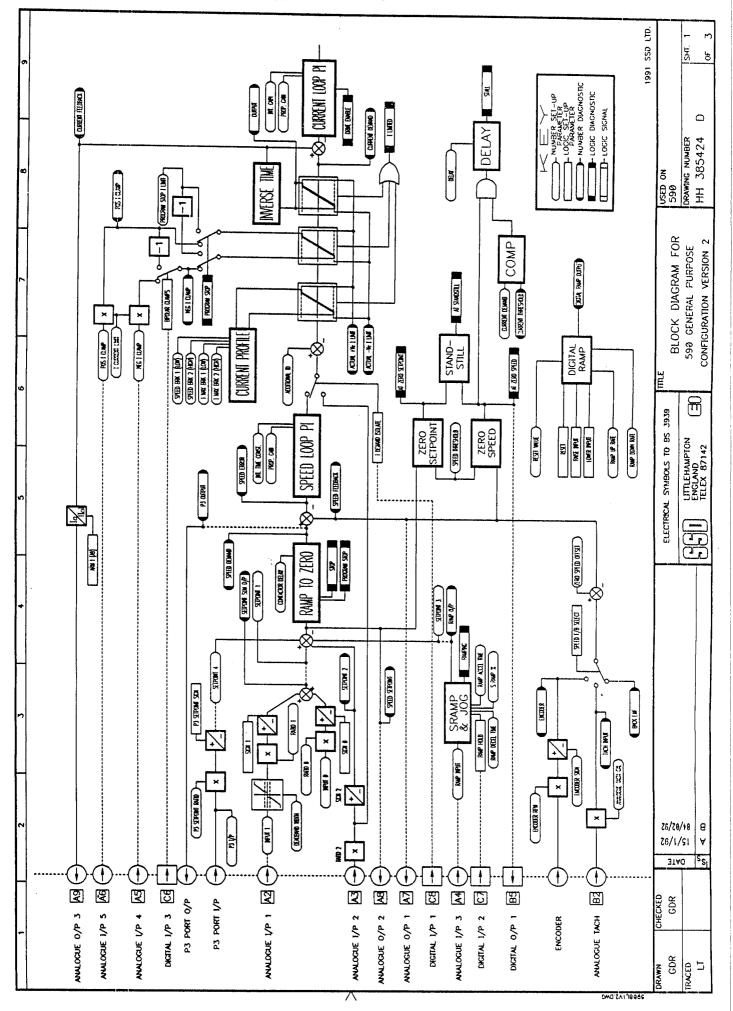
•---

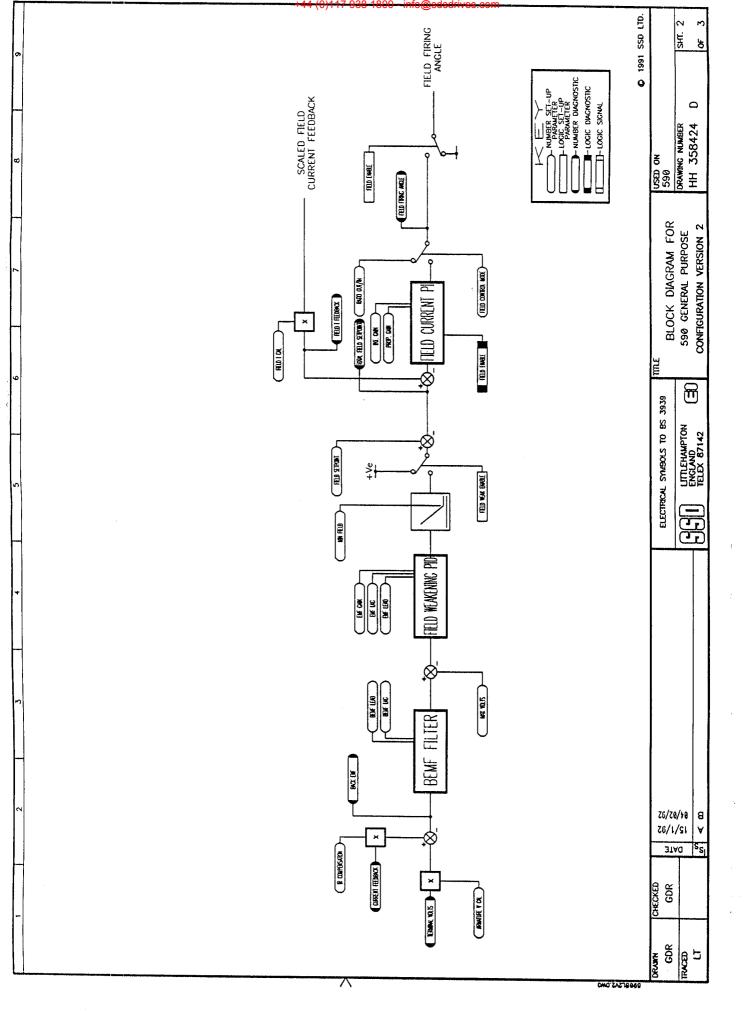
-

_

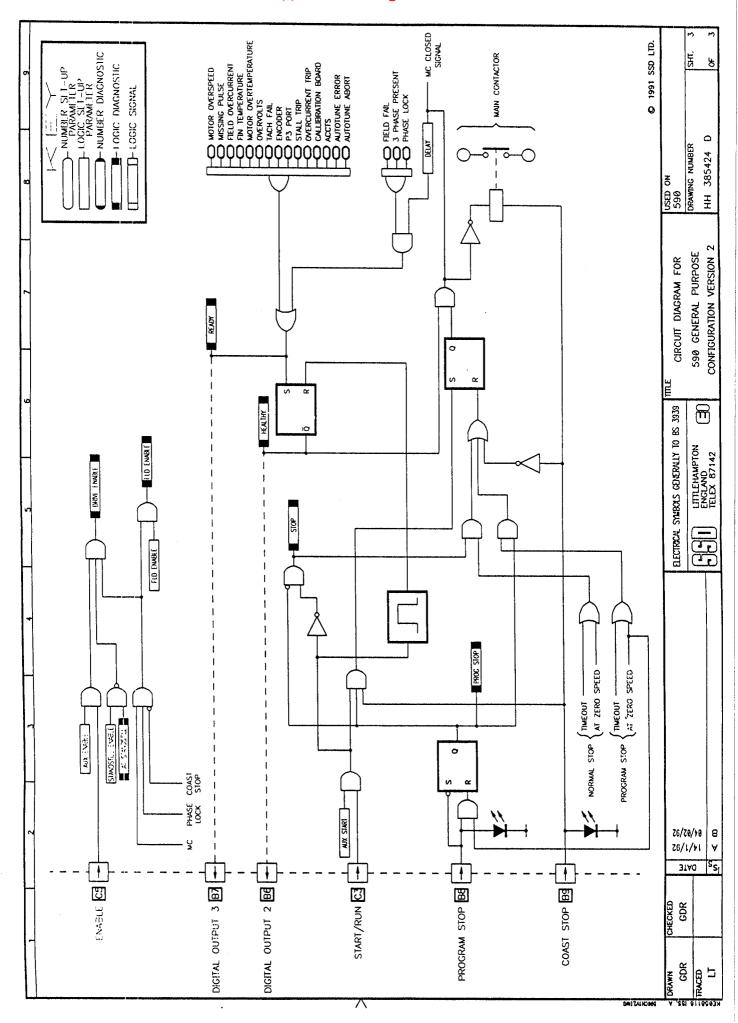
590 TAG LIST VERSION 1 - APPENDIX A

<u> </u>	NAME	R/O R/W	CONNECT TO INPUT		MAX. (VALUE	CHANGE WHILE THE DRIVE IS RUNNING	PASS WORD LEVEL
0	Null Operation Tag Useful for parking inputs and outputs not required in a specific configuration.						
1	EEprom Version No	R/W	NOCFG	0	FFFF	UNRESTRICT	PW1
2 3	Ramp up time	R/W	RECFG	0.1	600.0	UNRESTRICT	PW1
3 4	Ramp down time Ramp mode	R/W R/W	RECFG NOCFG	0.1	600.0	UNRESTRICT	PW1
5				DISABLED	ENABLED	UNRESTRICT	PW1
5 6	Ramp input Ratio 1	R/W R/W	RECFG RECFG	-100.00 0	+100.00 3.0000	UNRESTRICT	PW1
7	Ratio 2	R/W	RECFG	0	3.0000	UNRESTRICT UNRESTRICT	PW1 PW1
8	Sign 1	R/W	NOCFG	NEG	POS	UNRESTRICT	PW1
9	Sign 2	R/W	NOCFG	NEG	POS	UNRESTRICT	PW1
10	Zero Offset	R/W	NOCFG	-5.00	+5.00	UNRESTRICT	PW1
11	Standstill Logic	R/W	NOCFG	DISABLED	ENABLED	RESTRICTED	PW1
12 13	Zero Threshold Speed Loop Time Constant	R/W	NOCFG	0.00	5.00	UNRESTRICT	PW1
13	Speed Loop Proportional Gain	R/W R/W	RECFG RECFG	0.001 0.00	1.000 200.00	UNRESTRICT	PW1
15	Current Limit Scale		····· ·· ··			UNRESTRICT	PW1
15	Current Limit Scale Current Loop Proportional Gain	R/W R/W	RECFG RECFG	0.00 0.00	200.00	UNRESTRICT	PW1
17	Current Loop Integral Gain	R/W	RECFG	0.00	200.00 200.00	UNRESTRICT UNRESTRICT	PW1 PW1
18	Autotune I Loop	R/W	NOCFG	OFF	200.00 ON	UNRESTRICT	PW1 PW1
19	Inhibit Field Fail Alarm	R/W	NOCFG	INHIBITED	ENABLED	UNRESTRICT	PW1
20	Armeture Voltage Calibration	R/W	NOCFG	0.9800	1.1000	UNRESTRICT	PW1
21	IR Compensation	R/W	NOCFG	0.00	100.00	UNRESTRICT	PW1
22	Microtach Calibration	R/W	NOCFG	0	6000	UNRESTRICT	PW1
23 24	Analog Tach Calibration Number of Encoder Lines	R/W	NOCFG	0.9800	1.1000	UNRESTRICT	PW1
		R/W	NOCFG	10	5000	RESTRICTED	PW1
25 26	Meter Drive (A9) Bi/Unipolar	R/W	NOCFG	UNIPOLAR	BIPOLAR	UNRESTRICT	PW1
20 27	Stop Rate P-Stop Stop Rate N-Stop	R/W R/W	NOCFG NOCFG	0.1 0.1	600.0	UNRESTRICT	PW1
28	Stall Trip Inhibit	R/W	NOCFG	INHIBITED	600.0 ENABLED	UNRESTRICT UNRESTRICT	PW1 PW1
29	Stop Zero Speed Threshold	R/W	NOCFG	0.00	100.00	UNRESTRICT	PW1
30	Additional Current Demand	R/W	RECFG	-200.00	200.00	UNRESTRICT	PW1
31	Imax Speed	R/W	NOCFG	0.00	100.00	RESTRICTED	PW1
32	Imin Speed	R/W	NOCFG	0.00	100.00	RESTRICTED	PW1
33	Profile Imin	R/W	NOCFG	0.00	200.00	RESTRICTED	PW1
34	Field Backstop	R/W	NOCFG	0	1000	UNRESTRICT	PW1
35 36	Field Ffrstop	R/W	NOCFG	0	10000	UNRESTRICT	PW1
37 37	Field Iffb Delay Menu Full	R/W R/W	NOCFG NOCFG	0 DISABLED	255 ENIA DI ED	UNRESTRICT	PW1
38	Menu Speed	R/W	NOCFG	0	ENABLED 65536	UNRESTRICT UNRESTRICT	PW1 PW1
39	Configure Inhibit	R/W	NOCFG	DISABLED	ENABLED	RESTRICTED	PW1
40	System I/O	R/O	N/A	0	65536	N/A	N/A
41	Additional Speed Demand	R/W	RECFG	-100.00	+100.00	UNRESTRICT	PW1
42	Current Demand Clamped	R/O	NOCFG	FALSE	TRUE	UNRESTRICT	PW1
43 14	Digital Output 1 / Absolute	R/O	NOCFG	FALSE	TRUE	UNRESTRICT	PW1
44	Digital Output 2 / Absolute	R/O	NOCFG	FALSE	TRUE	UNRESTRICT	PW1
45 16	Digital Output 3 / Absolute	R/O	NOCFG	FALSE	TRUE	UNRESTRICT	PW1
46 47	Linear / S-Ramp Speed Feedback Select	R/W R/W	NOCFG NOCFG	LINEAR ARM.VOLI	PROFILED	UNRESTRICT	PW1
	•	-	1	ARM.VOL.		RESTRICTED	PW1
18	Neg Output Clamp	R/W	RECFG	-200.00	+200.00	UNRESTRICT	PW1
19	Microtach Sign	R/W	NOCFG	NEG	POS	RESTRICTED	PW1
50	Analog Input 1 A2	R/O	NOCFG	-10.00	+10.00	UNRESTRICT	DIAG
51 52	Analog Input 2 A3	R/O	NOCFG	-10.00	+10.00	UNRESTRICT	DIAG
52 53	Analog Input 3 A4 Analog Input 4 A5	R/O R/O	NOCFG NOCFG	-10.00 -10.00	+10.00 +10.00	UNRESTRICT	DIAG
54	Analog Input 5 A6	R/O	NOCFG	-10.00	+10.00	UNRESTRICT UNRESTRICT	DIAG DIAG
55	Analog Output 1 A7	R/O	NOCFG	-11.00	+11.00	UNRESTRICT	*****
56	Analog Output 2 A8	R/O	NOCFG	-11.00	+11.00	UNRESTRICT	DIAG DIAG
57	Armature Volts Raw	R/O	NOCFG	N/A	N/A	UNRESTRICT	N/A
58	Analog Tacho Feedback	R/O	NOCFG	-110.00	+110.00	UNRESTRICT	DIAG
59	MicroTach Feedback	R/O	NOCFG	0	6000	UNRESTRICT	DIAG
60 	Armature Volts Feedback (Terminal Volts)	R/O	NOCFG	-125.00	+125.00	UNRESTRICT	DIAG
	Actual Negative Current Limit	R/O	NOCFG	-200.00	+200.00	UNRESTRICT	DIAG
51 10	T-4-1 T N 1			110.00	110.00		17110
61 52 53	Total Feedback Total Setpoint	R/O R/O	NOCFG NOCFG	-110.00 -100.00	+110.00 +100.00	UNRESTRICT UNRESTRICT	DIAG DIAG


TAG	NAME	R/O R/W	CONNEC TO INPU	T MIN. F VALUE	MAX. VALUE	CHANGE WHILE THE DRIVE IS RUNNING	PASS WORD LEVEL
65	Current Feedback	R/O	NOCFG	-280.00	+280.00	UNRESTRICT	DIAG
66	Current Demand	R/O	NOCFG	-200.00	+200.00	UNRESTRICT	DIAG
67 68	Actual Positive Current Limit Start Input	R/O	NOCFG	-200.00	+200.00	UNRESTRICT	DIAG
69	Reserved	R/O	NOCFG	OFF	ON	UNRESTRICT	DIAG
70	Enable	R/O	NOCFG	OFF	ON	UNRESTRICT	DIAG
71 72	Dg In 1 Dg In 2	R/O	NOCFG	OFF	ON	UNRESTRICT	DIAG
73	Dg In 3	R/O R/O	NOCFG NOCFG	OFF OFF	ON	UNRESTRICT	DIAG
74	Dg Out 1	R/O	NOCFG	OFF	ON ON	UNRESTRICT UNRESTRICT	DIAG DIAG
75	Dg Out 2	R/O	NOCFG	OFF	ON	UNRESTRICT	DIAG
76	Dg Out 3	R/O	NOCFG	OFF	ON	UNRESTRICT	DIAG
77 78	At Zero Speed	R/O	NOCFG	FALSE	TRUE	UNRESTRICT	DIAG
79 79	At Zero Setpoint At Standstill	R/O R/O	NOCFG NOCFG	FALSE	TRUE	UNRESTRICT	DIAG
80	Program Stop	 R/O	NOCFG	FALSE	TRUE	UNRESTRICT	DIAG
81	Speed Feedback Alarm Inhibit	R/W	NOCFG	FALSE INHIBITED	TRUE ENABLED	UNRESTRICT	N/A
82	Drive Start	R/O	NOCFG	OFF	ON	UNRESTRICT UNRESTRICT	PW1 DIAG
83 84	Main Contactor						DIAG
85	Drive Enable Ramp Output		NOCEG	DISABLED	ENABLED	UNRESTRICT	DIAG
86 86	Setpoint Sum Output	R/O R/O	NOCFG NOCFG	-100.00 -100.00	+100.00 +100.00	UNRESTRICT	DIAG
87	Pos Current Clamp	R/O	NOCFG	-200.00	+100.00	UNRESTRICT UNRESTRICT	DIAG DIAG
88	Neg Current Clamp	R/O	NOCFG	-200.00	+200.00	UNRESTRICT	DIAG
89	Speed Demand.	R/O	NOCFG	-100.00	+100.00	UNRESTRICT	DIAG
90 91	spdlopd.clamp_mode Program Stop Current Limit	R/W	Modeo	•	A 00.00		
92	Microtach Alarm Inhibit	R/W	NOCFG NOCFG	0 INHIBITED	200.00 ENABLED	UNRESTRICT	PW1
93	Current Profile Imax	R/W	NOCFG	0	200.00	UNRESTRICT RESTRICTED	PW1 PW1
94	Aux_Dg_Output1	R/W	RECFG	OFF	ON	UNRESTRICT	PW1
95 96	Aux_Dg_Output2	R/W	RECFG	OFF	ON	UNRESTRICT	PW1
90 97	Aux_Dg_Output3 Dgout_Source 1	R/W R/W	RECFG NOCFG	OFF 0	ON	UNRESTRICT	PW1
98	Dgout_Source 2	R/W	NOCFG	0	255 255	RESTRICTED RESTRICTED	PW1 PW1
99	Dgout_Source 3	R/W	NOCFG	ŏ	255	RESTRICTED	PW1 PW1
100	Ratio Sum Input 1	R/O	NOCFG	-100	+100	RESTRICTED	PW1
101 102	Ratio Sum Input 2	R/W	RECFG	-200	+200	UNRESTRICT	PW1
102	Dgin 1 Dest Tag Dgin 1 True Value	R/W R/W	N/A	0	255	RESTRICTED	PW1
104	Dgin 1 False Value	R/W	RECFG RECFG	-300 -300	+300 +300	UNRESTRICT UNRESTRICT	PW1 PW1
105	Dgin 2 Dest Tag	R/W	N/A	0	255	RESTRICTED	PW1
106	Dgin 2 True Value	R/W	RECFG	-300	+300	UNRESTRICT	PW1
107 108	Dgin 2 False Value Dgin 3 Dest Tag	R/W	RECFG	-300	+300	UNRESTRICT	PW1
109	Dgin 3 True Value	R/W R/W	N/A RECFG	0 -300	255 +300	RESTRICTED UNRESTRICT	PW1 PW1
110	Dgin 3 False	R/W	RECFG	-300	+300	UNRESTRICT	PW1
111	5703 RCV Error Inhibit	R/W	NOCFG	INHIBITED	ENABLED	UNRESTRICT	PW1
112	Stalled	R/O	NOCFG	ок	ACTIVE	UNRESTRICT	N/A
113 114	Reserved Reserved						
115	Health Word	R/O	NOCFG	0	FFFF	UNRESTRICT	DIAG
116	Health Store	R/O	NOCFG	Ö	FFFF	UNRESTRICT	DIAG
[17	Health Inhibit	R/O	NOCFG	OFF	ON	UNRESTRICT	PW1
118	Ramp Hold	R/W	RECFG	OFF	ON	UNRESTRICT	PW1
(19	I Demand Isolate	R/W	RECFG	DISABLED	ENABLED	UNRESTRICT	PW1
120 121	Password Stored Password	R/W R/W	NOCFG NOCFG	0 0	FFFF	UNRESTRICT	PW0
122	Health Flag	R/O	NOCFG	U FALSE	FFFF TRUE	UNRESTRICT	PW1
123	Peek Address	R/W	NOCFG	0	FFFF	UNRESTRICT UNRESTRICT	PW1 PW1
124	Peek Scale	R/W	NOCFG	Ŏ	FFFF	UNRESTRICT	PW1
125	Ready Flag	R/O	NOCFG	FALSE	TRUE	UNRESTRICT	PW1
l26 l27	Minimum Speed Offset Dump Enable	R/W R/O	RECFG	-100.00	+100.00	UNRESTRICT	PW1
			NOCFG	DISABLED	ENABLED	RESTRICTED	PW1
128	Aux Analog Output1	R/W	RECFG	~100.00	+100.00	UNRESTRICT	PW1


TAG	NAME	R/O	CONNECT	MIN.	MAX.	CHANGE WHILE	PASS
		R/W	TO INPUT		VALUE	THE DRIVE IS RUNNING	WORD
130	P3 Mode	R/W	NOCFG		CTED/MASTER/	UNRESTRICT	PW1
131	Deadband Width	R/W	NOCFG	0	LAVE 100.00	UNRESTRICT	PW1
132	P3 Setpoint Scaling P3	R/W	RECFG	-3.0000	+3.0000	UNRESTRICT	PW1
133 134	P3 Setpoint Sign	R/W	NOCFG	NEG	POS	UNRESTRICT	PW1
here and the second sec	P3 Output Slot	R/W	NOCFG	0	255	RESTRICTED	PW1
135 136	P3 Input Slot Feedforward	R/W	NOCFG	0	255	RESTRICTED	PW1
137	Dis/Continuous boundary	R/W R/W	NOCFG NOCFG	1.00 0	50.00 200.00	UNRESTRICT	PW1
138	Serial P1 GID	R/W	NOCFG	ŏ	7	UNRESTRICT UNRESTRICT	PW1 PW1
139	Serial P1 UID	R/W	NOCFG	0	15	UNRESTRICT	PW1
140	Serial P2 GID	R/W	NOCFG	0	7	UNRESTRICT	PW1
141 142	Serial P2 UID Serial P1 Pno 7	R/W R/W	NOCFG NOCFG	0 0	15 65535	UNRESTRICT	PW1
143	Serial P2 Pno 7	R/W	NOCFG	0	65535	UNRESTRICT UNRESTRICT	PW1 PW1
144	Serial P1 Hysteresis	R/W	NOCFG	ŏ	32767	UNRESTRICT	PW1 PW1
145	Serial P2 Hysteresis	R/W	NOCFG	0	32767	UNRESTRICT	PW1
146	Serial P1 Enable	R/W	NOCFG	DISABLED	ENABLED	UNRESTRICT	PW1
147 148	Serial P2 Enable Serial P1 Ascii/Bin	R/W R/W	NOCFG	DISABLED	ENABLED	UNRESTRICT	PW1
149	Serial P2 Ascii/Bin	R/W	NOCFG NOCFG	ASCII ASCII	BINARY BINARY	UNRESTRICT UNRESTRICT	PW1 PW1
150	Serial P1 Baud	R/W	NOCFG	0	FFFF	UNRESTRICT	PW1
151	Serial P2 Baud	R/W	NOCFG	õ	FFFF	UNRESTRICT	PW1 PW1
152 153	Serial P1 Esp	R/W	NOCFG	DISABLED	ENABLED	UNRESTRICT	PW1
155	Serial P2 Esp Instrument Identity (II)	R/W R/W	NOCFG NOCFG	DISABLED 0	ENABLED	UNRESTRICT	PW1
1.55	Version Number (VO)	R/O			FFFF	UNRESTRICT	PW1
156	Config Information (CI)	R/O	NOCFG NOCFG	0 0	FFFF FFFF	UNRESTRICT UNRESTRICT	PW1 PW1
157	Block Length (BL)	R/O	NOCFG	Õ	FFFF	UNRESTRICT	PW1
158 159	Serial P1 Error Report (EE)	R/W	NOCFG	0	FFFF	UNRESTRICT	PW1
	Serial P2 Error Report (EE)	R/W	NOCFG	0	FFFF	UNRESTRICT	PW1
160 161	Mode No (MN) Aux Start	R/O R/W	NOCFG NOCFG	0 OFF	FFFF ON	UNRESTRICT	PW1
162	Min Cycle Time	R/W	NOCFG	0	FFFF	UNRESTRICT UNRESTRICT	PW1 PW1
163	I Loop PI Mode	R/W	NOCFG	0/1/		RESTRICTED	PW1
164	Toggle Rate	R/W	NOCFG	0	FFFF	UNRESTRICT	PW1
165 166	Toggle Ref 1 Sel. Ref	R/W	NOCFG	-3.0000	+3.0000	UNRESTRICT	PW1
100	Sei. Kei	R/W	NOCFG		L/CURRENT/ EED	RESTRICTED	PW1
167	Toggle Ref2	R/W	NOCFG	-3.0000	+3.0000	UNRESTRICT	PW1
168 169	Aux Enable	R/W	NOCFG	OFF	ON	UNRESTRICT	PW1
170	System Field Enable	R/O	NOCFG	DISABLED	ENABLED	UNRESTRICT	PW1
171	Field Enable Field Setpoint	R/W R/W	NOCFG RECFG	DISABLED 0.00	ENABLED 100.00	RESTRICTED	PW1
172	Field Loop I Gain	R/W	NOCFG	0.00	100.00	UNRESTRICT UNRESTRICT	PW1 PW1
173	Field Loop P Gain	R/W	NOCFG	0.00	100.00	UNRESTRICT	PW1
174	Select Fld Weakening	R/W	NOCFG	DISABLED	ENABLED	RESTRICTED	PW1
175	Emf Lead Time Const	R/W	NOCFG	0.10	50.00	UNRESTRICT	PW1
176 177	Emf Lag Time Const Emf Gain	R/W R/W	NOCFG NOCFG	0.00 0.00	200.00 100.00	UNRESTRICT	PW1
178	Emf Const V Level	R/W	NOCFG	0	100.00	UNRESTRICT UNRESTRICT	PW1 PW1
179	Field Weakening Limit	R/W	NOCFG	0	100.00	RESTRICTED	PW1
180	Spdfeedback Alarm Window	R/W	NOCFG	0	100.00	UNRESTRICT	PW1
181 182	Field Current Feedback. Field Current Ratio.	R/O	NOCEG	-150.00	+150.00	UNRESTRICT	PW1
182	Total Field Setpoint,	R/W R/O	NOCFG NOCFG	0.9800 0	1.1000 100.00	UNRESTRICT	PW1
184	Field Firing Angle.	R/W	NOCFG	5	154	UNRESTRICT UNRESTRICT	PW1 PW1
185	Field Quench Delay.	R/W	NOCFG	0.1	600.0	UNRESTRICT	PW1
186	Field Quench Mode.	R/W	NOCFG	QUENCH	STANDBY	UNRESTRICT	PW1
187 188	P3 Unratioed Output Over Speed	R/O R/W	RECON NOCFG	-300.00 0	+300.00	UNRESTRICT	PW1
189	P3 Output	R/O	NOCEG	-300.00	200.00 +300.00	UNRESTRICT UNRESTRICT	PW1 DIAG
190	Peak Hardware Delay	R/W	NOCFG	0	65535	RESTRICTED	PW1
191	Bemf Fbk Lead	R/W	NOCFG	10	5000	UNRESTRICT	PW1
192	Bemf Fbk Lag	R/W	NOCFG	10	5000	UNRESTRICT	PW1
193 194	Tick Length Disc_Adapt_Pot	R/O R/W	NOCFG NOCFG	0 0	65535	UNRESTRICT	PW1
* / T 		1\[\]	nocro	V	100.00	RESTRICTED	PW1

 $_{\rm entry} <$


TAG	NAME	R/O R/W	CONNEC TO INPL	T MIN. F VALUE	MAX. VALUE	CHANGE WHILE	PASS
	_		TO INPU.	I YALUB	VALUE	THE DRIVE IS RUNNING	WORD LEVEL
195 196	Dgout 1 Threshold Dgout 2 Threshold	R/W	NOCFG	-300	300	RESTRICTED	PW1
196 197	Dgout 2 Threshold Dgout 3 Threshold	R/W R/W	NOCFG NOCFG	-300 -300	300 300	RESTRICTED	PW1
198	P3 Baud Rate	R/W	NOCFG	-500	FF	RESTRICTED RESTRICTED	PW1 PW1
199	Inverse Time Delay	R/W	NOCFG	0.1	600.0	RESTRICTED	PW2
200	Inverse Time Rate	R/W	NOCFG	0.1	600.0	RESTRICTED	PW2
201	Current Loop 2 Quad Mode	R/W	NOCFG	DISABLED	ENABLED	RESTRICTED	PW1
202	Speed Loop Integral Defeat	R/W	RECFG	OFF	ON	UNRESTRICT	PWI
203 204	Inverse Time Output	R/O	NOCFG	0	200.00	RESTRICT	PW2
	Inverse Time Aiming Point	R/W	NOCFG	0	200.00	RESTRICTED	PW2
205 206	PLL Int PLL Prop	R/W	NOCFG	0	200	UNRESTRICT	PW1
207	Reserved	R/W	NOCFG	0	200	UNRESTRICT	PW1
208	Reserved						
209	Field Loop Mode	R/W	NOCFG	CURRENT	VOLTAGE	RESTRICTED	PW1
210	Field Voltage Ratio	R/W	NOCFG	0	100.00	UNRESTRICT	PW1
211	System Health Inhibit	R/W	NOCFG	ŏ	FFFF	RESTRICTED	PW1
212	Reserved						1 10 1
213	Reserved						
214	Reserved			······································			
215	Load Meter	R/O	NOCFG	-200,00	+200.00	UNRESTRICT	PW1
216 217	Program Stop Delay Time Stop Time Delay	R/W R/W	NOCFG	0	600.00	UNRESTRICT	PW1
218	Reserved	K/W	NOCFG	0	600.0	UNRESTRICT	PW1
219	Reserved						
220	DAC 12 Bit Select	R/W	NOCFG	DISABLED	ENABLED	RESTRICTED	D31/1
221	di/dt	R/W	NOCFG	0	200.00	UNRESTRICT	PW1 PW1
222	Reserved			-		WINDSING1	1 771
223	Reserved	-					
224	Stall Trip Delay	R/W	NOCFG	0.1	600.0	RESTRICTED	PW1
225	Reserved						
226 227	Arm End Stop Reserved	R/W	NOCFG	0	200.00	RESTRICTED	PW1
228	Reserved						
229	Precision Check	R/W	NOCFG	FALSE	TRUE	RESTRICTED	PW1
230	Analog I/P 1 / Cal	R/W	NOCFG	0	3.0000	UNRESTRICT	PW1
231	Analog I/P 1 / Max	R/W	NOCFG	-300	+300	UNRESTRICT	PW1 PW1
232	Analog I/P 1 / Min	R/W	NOCFG	-300	+300	UNRESTRICT	PW1
233 234	Analog I/P 2 / Cal	R/W	NOCFG	0	3.0000	UNRESTRICT	PW1
	Analog I/P 2 / Max	R/W	NOCFG	-300	+300	UNRESTRICT	PW1
235 236	Analog I/P 2 / Min Analog I/P 3 / Cal	R/W	NOCFG	-300	+300	UNRESTRICT	PW1
230 237	Analog I/P 3 / Cai Analog I/P 3 / Max	R/W R/W	NOCFG NOCFG	0 -300	3.0000	UNRESTRICT	PW1
238	Analog I/P 3 / Min	R/W	NOCFG	-300	+300 +300	UNRESTRICT UNRESTRICT	PW1 PW1
239	Analog I/P 4 / Cal	R/W	NOCFG	0	3.0000	UNRESTRICT	PW1
240	Analog I/P 4 / Max	R/W	NOCFG	-300	+300	UNRESTRICT	PW1
241	Analog I/P 4 / Min	R/W	NOCFG	-300	+300	UNRESTRICT	PW1 PW1
242	Analog I/P 5 / Cal	R/W	NOCFG	0	3.0000	UNRESTRICT	PW1
243	Analog I/P 5 / Max	R/W	NOCFG	-300	+300	UNRESTRICT	PW1
244	Analog I/P 5 / Min	R/W	NOCFG	-300	+300	UNRESTRICT	PW1
245	Anout 1 / Cal	R/W	NOCFG	0	300.00	UNRESTRICT	PW1
246 247	Analog I/P 1 / Dest Analog I/P 2 / Dest	R/W R/W	NOCFG	0	255	RESTRICTED	PW1
248	Anout 2 / Cal	R/W	NOCFG NOCFG	0 0	255 300.00	RESTRICTED UNRESTRICT	PW1 PW1
49	Analog I/P 3 / Dest	R/W	NOCFG	0	255	RESTRICTED	PW1 PW1
50	Analog I/P 4 / Dest	R/W	NOCFG	0	255	RESTRICTED	 PW1
51	Anout 1 / Source	R/W	NOCFG	ŏ	255	RESTRICTED	PW1 PW1
.52	Anout 2 / Source	R/W	NOCFG	Õ	255	RESTRICTED	PW1
253	Reserved						
54	Reserved						

......

This manual was downloaded on www.sdsdrives.com

APPENDIX B

Version 2 Software TABLE OF CONTENTS

Page Number

	BLOCK DIAGRAM	
1	DIAGNOSTIC DESCRIPTIONS	1
2	SET-UP PARAMETER DESCRIPTIONS	3
	RAMPS	3
	AUX I/O	3
	JOG/SLACK	4
	RAISE/LOWER	4
	FIELD CONTROL	5
	CURRENT PROFILE	6
	INVERSE TIME	6
	STOP RATES	6
	CALIBRATION	7
	ALARMS	7
	CURRENT LOOP	8
	SPEED LOOP	8
	STANDSTILL	9
	SETPOINT SUM	9
	2.1 SERIAL LINK PARAMETERS	10
	2.2 SYSTEM PARAMETERS	12

TAG LIST

1 DIAGNOSTIC DESCRIPTIONS

DIAGNOSTIC POINT	TAG	DESCRIPTION	SCALING
SPEED DEMAND	89	SPEED LOOP TOTAL SETPOINT	± 100%
SPEED FEEDBACK	296	SPEED LOOP FEEDBACK	± 150%
SPEED ERROR	297	SPEED LOOP ERROR	± 150%
CURRENT DEMAND	299	CURRENT LOOP CURRENT DEMAND (SPEED ERROR PI OUTPUT OR EXTERNAL CURRENT DEMAND CLAMPED BY ALL LIMITS)	± 150%
CURRENT FEEDBACK	298	SCALED ARMATURE CURRENT	± 150%
POSICLAMP	87	POSITIVE CURRENT CLAMP	± 200%
NEG I CLAMP	88	NEGATIVE CURRENT CLAMP	± 200%
ACTUAL POS I LIM	67	OVERALL POSITIVE CURRENT LIMIT VALUE	± 200%
ACTUAL NEG I LIM	61	OVERALL NEGATIVE CURRENT LIMIT VALUE	± 200%
INVERSE TIME O/P	203	INVERSE TIME CLAMP OUTPUT LEVEL	0 to 200%
AT CURRENT LIMIT	42	CURRENT DEMAND RESTRAINED BY OVERALL CURRENT LIMIT	TRUE/FALSE
AT ZERO SPEED	77	AT ZERO SPEED FEEDBACK	TRUE/FALSE
AT ZERO SETPOINT	78	AT ZERO SPEED SETPOINT	TRUE/FALSE
AT STANDSTILL	79	AT STANDSTILL, i.e. AT ZERO SPEED AND ZERO SPEED SETPOINT	TRUE/FALSE
STALL TRIP	112	MOTOR CURRENT ABOVE STALL THRESHOLD AND AT ZERO SPEED BUT NOT AT ZERO SPEED DEMAND	OK/TRIP
RAMPING	113	RAMP OUTPUT CHANGING TO NEW SETPOINT i.e. THE DIFFERENCE BETWEEN THE RAMP INPUT AND THE RAMP OUTPUT IS GREATER THAN THE RAMP THRESHOLD	TRUE/FALSE
PROGRAM STOP	80	PROGRAM STOP TERMINAL	TRUE/FALSE
DRIVE START	82	CONTROLLER START/RUN COMMAND	ON/OFF
DRIVE ENABLE	84	DRIVE CONTROL LOOP ENABLE	ENABLED/ DISABLED
OPERATING MODE	212	OPERATING MODE	3
FIELD ENABLE	169	DRIVE FIELD LOOP ENABLE	ENABLED/ DISABLED
FIELD DEMAND	183	FIELD CURRENT DEMAND	0 to +200%
FIELD I FBK	181	SCALED FIELD CURRENT FEEDBACK	± 150%
FLD FIRING ANGLE	184	CURRENT VALUE OF FIELD FIRING ANGLE	0 to 180°
ANIN 1 [A2]	50	SPEED SETPOINT No. 1 *	± 10V
ANIN 2 [A3]	51	SPEED SETPOINT No. 2/CURRENT DEMAND	± 10V
ANIN 3 [A4]	52	RAMPED SPEED SETPOINT *	± 10V
ANIN 4 [A5]	53	NEGATIVE CURRENT CLAMP *	± 10V
ANIN 5 [A6]	54	EXTERNAL CURRENT LIMIT/POSITIVE CURRENT CLAMP *	± 10V

Continued/...

DIAGNOSTIC POINT	TAG	DESCRIPTION	SCALING
ANOUT 1 [A7]	55	SPEED SPEEDBACK *	± 10V
ANOUT 2 [A8]	56	TOTAL SPEED SETPOINT *	± 10V
START [C3]	68	START/RUN TERMINAL	ON/OFF
JOG INPUT [C4]	69	JOG/TAKE-UP SLACK TERMINAL	ON/OFF
ENABLE [C5]	70	ELECTRONIC ENABLE TERMINAL	ON/OFF
DIGIN 1 [C6]	71	CONFIGURATION INPUT No. 1 * SINGLE CURRENT CLAMP/BIPOLAR CURRENT CLAMPS	ON/OFF
DIGIN 2 [C7]	72	RAMP HOLD INPUT *	ON/OFF
DIGIN 3 [C8]	73	CONFIGURATION INPUT No. 2 * CURRENT DEMAND ISOLATE, GIVING SPEED OR CURRENT OPERATION	ON/OFF
DIGOUT 1 [B5]	74	AT ZERO SPEED *	ON/OFF
DIGOUT 2 [B6]	75	DRIVE HEALTHY (DRIVE OPERATIONAL) *	ON/OFF
DIGOUT 3 [B7]	76	READY * DRIVE READY TO RUN ALL ALARMS HEALTHY	ON/OFF
RAISE/LOWER OUTPUT	264	RAISE/LOWER BLOCK OUTPUT VALUE	± 100%
SETPOINT SUM OP	86	SETPOINT SUBTOTAL OF DIRECT INPUTS	± 100%
RAMP OUTPUT	85	SETPOINT RAMP OUTPUT	± 100%
SPEED SETPOINT	63	SPEED LOOP TOTAL SETPOINT INC. RAMP [SUM SPEED SETPOINT BEFORE RAMP TO ZERO]	± 150%
TERMINAL VOLTS	57	SCALED TERMINAL VOLTS	± 150%
BACK EMF	60	CALCULATED MOTOR BACK EMF INCLUDING IR COMPENSATION	± 150%
TACH INPUT [B2]	58	SCALED ANALOGUE TACHOGENERATOR FEEDBACK	± 110%
ENCODER	295	ENCODER SPEED FEEDBACK	± 6000 RPM

* Notes:- The function indicated under description is the default function of the software, actual function is determined by the setting of the source tag selection in the configuration menu.

2. SET-UP PARAMETER DESCRIPTIONS

PARAMETER NAME	DESCRIPTION	RANGE	DEFAULT	TAG
	RAMPS			
RAMP ACCEL TIME	ACCELERATION TIME [100% CHANGE]	0.1 to 600.0	10.0 SECS	2
RAMP DECEL TIME	DECELERATION TIME [100% CHANGE]	0.1 to 600.0	10.0 SECS	3
†CONSTANT ACCEL	CONSTANT ACCELERATION IN BOTH QUADRANTS	ENABLED/ DISABLED	ENABLED	4
RAMP HOLD	RAMP HOLD TAG	ON/OFF	OFF	118
RAMP INPUT	RAMP INPUT TAG	±100.00%	0.00%	5
% S-RAMP 1	PERCENTAGE OF RAMP WITH ADDITIONAL RATE OF CHANGE	0.00 to 100.00%	5.00%	266
RAMPING THRESHOLD	RAMPING FLAG THRESHOLD LEVEL	0.00 to 100.00%	0.5%	286
AUTO RESET	RAMP RESET BY DRIVE ENABLE TRANSISTION	ENABLED/ DISABLED	ENABLED	287
EXTERNAL RESET	TAG FOR EXTERNAL RAMP RESET [AUTO RESET MUST BE DISABLED]	ENABLED/ DISABLED	DISABLED	288
SPD.FBK.RESET	RAMP RESETS TO CURRENT VALUE OF SPEED FEEDBACK	ENABLED/ DISABLED	DISABLED	303
MIN SPEED	MINIMUM SPEED CLAMP	± 100.00%	0.00%	126
	<u>AUX I/O</u> 2			
AUX START	SOFTWARE START/RUN COMMAND	ON/OFF	ON	161
AUX JOG	SOFTWARE JOG COMMAND	ON/OFF	ON	227
AUX ENABLE	SOFTWARE ENABLE COMMAND	ON/OFF	ON	168
AUX DIG OUTPUT 1	SOFTWARE DIGITAL TAG NO. 1	ON/OFF	OFF	94
AUX DIG OUTPUT 2	SOFTWARE DIGITAL TAG NO. 2	ON/OFF	OFF	95
AUX DIG OUTPUT 3	SOFTWARE DIGITAL TAG NO. 3	ON/OFF	OFF	96
ANOUT 1	SOFTWARE ANALOGUE TAG NO. 1	±100.00%	0.00%	128
ANOUT 2	SOFTWARE ANALOGUE TAG NO. 2	±100.00%	0.00%	129

† Password Dependant

 NOTES

 1
 If "% S-Ramp" parameter is set to zero, the ramp is linear. Actual Ramp Time = Ramp Time x $\begin{bmatrix} 3.5\\100 x (\% SRAMP) + 1 \end{bmatrix}$

 2
 The auxiliary I/O are parameters which can be controlled either via the serial communications or by reconfiguration of other internal parameters. In the case of auxiliary command signals "auxiliary start", "auxiliary jog" and "auxiliary enable" the input will be the result of the "And" of the normal signal with the auxiliary signal.

The software digital and analogue tags are internal memory locations which can be attached by configuration to the digital or analogue output and controlled by the serial communications or the MMI.

PARAMETER NAME	DESCRIPTION	RANGE	DEFAULT	TAG
	JOG/SLACK			
JOG SPEED 1	JOG SPEED 1 SETPOINT.	± 100.00%	5.00%	218
JOG SPEED 2	JOG SPEED 2 SETPOINT.	± 100.00%	- 5.00%	219
TAKE UP 1	TAKE-UP SLACK SPEED SETPOINT 1.	± 100.00%	5.00%	253
TAKE UP 2	TAKE-UP SLACK SPEED SETPOINT 2.	± 100.00%	-5.00%	254
CRAWL SPEED	CRAWL SPEED.	± 100.00%	10.00%	225
MODE	JOG/SLACK OPERATING MODE 3.	TRUE/FALSE	FALSE	228
	RAISE/LOWER			
RESET VALUE	OUTPUT VALUE WHEN RESET.	± 300.00%	0.00%	255
INCREASE RATE	RATE OF CHANGE OF INCREASING OUTPUT VALUE.	0.1 to 600.0 SECS	10.0 SECS	256
DECREASE RATE	RATE OF CHANGE OF DECREASING OUTPUT VALUE.	0.1 to 600.0 SECS	10.0 SECS	257
RAISE INPUT	RAISE OUTPUT VALUE COMMAND.	TRUE/FALSE	FALSE	261
LOWER INPUT	LOWER OUTPUT VALUE COMMAND.	TRUE/FALSE	FALSE	262
MIN VALUE	MINIMUM RATE/LOWER RAMP	± 300.00%	-100.00%	258
MAX VALUE	VALUE. MAXIMUM RAISE/LOWER RAMP VALUE.	± 300.00%	100.00%	259
EXTERNAL RESET	EXTERNAL RESET TAG ONE SHOT RESET	TRUE/FALSE	FALSE	288

NOTES

(3) A combination of the Mode Parameter, Jog Input [C4] and the Run Input [C3] determines the setpoint value input to the Setpoint Ramp.

OPERATING MODE	MODE	C3	C4	SETPOINT INPUT	CONTACTOR
STOP	FALSE	OFF	OFF	SETPOINT	OFF
STOP	TRUE	OFF	OFF	SETPOINT	OFF
RUN	FALSE	ON	OFF	SETPOINT	ON
TAKE-UP SLACK 1	FALSE	ON	ON	SETPOINT + TAKE-UP SLACK 1	ON
TAKE-UP SLACK 2	TRUE	ON	OFF	SETPOINT + TAKE-UP SLACK 2	ON
INCH/JOG 1	FALSE	OFF	ON	SJOG SETPOINT 1	ON
INCH/JOG 2	TRUE	OFF	ON	JOG SETPOINT 2	ON
CRAWL	TRUE	ON	ON	CRAWL SETPOINT	ON

590 Manual

APPENDIX B

····

PARAMETER NAME	DESCRIPTION	RANGE	DEFAULT	TAG
	FIELD CONTROL			
FIELD ENABLE	When a controlled field regulator is fitted, the control algorithm must be enabled (uncontrolled diode bridge fields do not need the field enabled). Field enable allows the regulator to control field current	ENABLED/ DISABLED	ENABLED	170
FIELD CONTROL MODE IS	When a controlled field regulator is fitted there is a possibility of two control algorithms:	VOLTAGE OR CURRENT	VOLTAGE CONTROL	209
	 (a) Field Voltage Control, an open loop phase angle control to simulate rectifier fields. (b) Field Current Control, a closed loop current control for accurate field control or expansion to field weakening. 			
RATIO OUT/IN	FIELD VOLTAGE VARIABLES This parameter controls the output voltage from the open loop voltage control. Where ratio is the nominal AC in to DC out ratio of a rectifier bridge.	0.00 to 100.00%	90.00% singlephase rectifier	210
SETPOINT	FIELD CURRENT VARIABLES Field current setpoint.	0.00 to 100.00%	100.00%	171
PROP. GAIN	This is the proportional gain adjustment of the field PI loop.	0.00 to 100.00	0.10	173
INT. GAIN	When the field regulator is controlling the field current a PI loop is in operation. This is the integral gain adjustment of the PI loop.	0.00 to 100.00	1.28	172
FLD. WEAK ENABLE	FIELD WEAK VARIABLES Certain applications of a DC motor controller are best achieved in speed control by field weakening. If a controlled field regulator is fitted and enabled, field weakening enable adds the additional PID loop of the field weakening (field overspill) control.	ENABLED/ DISABLED	DISABLED	174
EMF LEAD	With field weakening control enabled a PID loop is brought into operation this is the derivative adjustment of the field weakening PID loop.	0.10-50.00	2.00	175
EMF LAG	This is the integral adjustment of the field weakening PID loop.	0.00 to 200.00	40.00	176
EMF GAIN	This is the gain adjustment of the field weakening PID loop.	0.00 to 100.00	0.30	177
MIN FLD CURRENT	The field weakening loop reduces the field current to achieve speed control. At top speed the field reaches a minimum value. This limit is a fixed minimum value to set the absolute lower field limit.	0.00 to 100.00%	10.00%	179
MAX. VOLTS	Maximum volts is the level at which field weakening begins. The level is set relative to the 100% calibration value set by the calibration resistors and armature voltage	0.00 to 100.00%	100.00%	178
BEMF FBK LEAD	calibration.	10 - 5000	100	191
BEMF FBK LAG		10 - 5000	100	192
FIELD QUENCH DELAY	FIELD OUENCH CONTROLS If dynamic breaking is used the field must be maintained for a period after the drive is disabled. The field quench delay is the period of time the field is maintained.	0.0 to 600.0 SECS	10.0 SECS	185
FIELD QUENCH MODE	After the field quench delay the field can be entirely quenched or put into a standby mode at minimum field level.	QUENCH/ STANDBY	QUENCH	186

ļ

PARAMETER NAME	DESCRIPTION	RANGE	DEFAULT	TAG
	CURRENT PROFILE			
SPD BRK 1 (LOW)	When speed control is obtained by field weakening, the ability of the motor to commutate current is reduced at low field currents. Speed breakpoint 1 is the relative motor speed at which current profiling begins.	100.00%	100.00%	32
SPD BRK 2 (HIGH)	Speed break 2 is the upper speed limit at which current profiling ends.	0.00 to 100.00%	100.00%	31
IMAX BRK 1 (SPD1)	This sets the current limit value at or below speed break point 1, provided other limits are greater than its setting.	0.00 to 200.00%	200.00%	93
IMAX BRK 2 (SPD2)	This sets the current limit value at or above speed break point 2.	0.00 to 200.00%	200.00%	33
	INVERSE TIME			
†AIMING POINT	Final Overload Limit Level.	0 to 200%	110.00%	204
†DELAY	Time at Current Limit.	0.1 to 600 SECS	10.0 SECS	199
†RATE	Rate of reduction of overload current limit.	0.1 to 600 SECS	60.0 SECS	200
	STOP RATES			
STOP TIME	Time to reach zero speed from 100% set speed in normal stop mode.	0.1-600.00 SECS	10.0 SECS	27
STOP LIMIT	Delay time limit to allow normal stop action before drive quench and coast stop.	0-600.00 SECS	60.0 SECS	217
CONTACTOR DELAY	Time delay to opening contactor after zero speed value reached.	0.00 to 600.00 SECS	5.0 SECS	302
PROG STOP TIME	Time to reach zero speed from 100% set speed in program stop mode.	0.1 to 600.00 SECS	0.1 SECS	26
PROG STOP LIMIT	Delay time limit to allow program stop action before drive quench and coast stop.	0 to 600.00 SECS	60.0 SECS	216
PROG STOP I LIM	Main current limit level in program stop mode assuming limits not constrained by I Profile or Inverse Time.	0.00 to 200.00%	100.00%	91
STOP ZERO SPEED	Zero speed level in program stop + normal stop mode at which contactor is de-energised and the drive quenched.	0.00 to 100.00%	2.00%	29

* Diagnostic Parameter only.

PARAMETER NAME	DESCRIPTION	RANGE	DEFAULT	TAG
NAME				
	CALIBRATION			
ARMATURE V	Trim adjustment of the motor armature level giving 100%	0.9800 to	1.0000	20
CAL	armature volts. Note:- Primary voltage calibration is achieved by the	1.1000		
	selection of resistors R8 and R9 on the calibration board.			
IR COMPENSATION	Compensation for motor IR drop to improve regulation when using armature voltage feedback for speed control.	0.00 to	0.00%	21
ENCODER RPM		100.00%		
ENCODER REM	Motor top speed setting when encoder feedback.	0 to 6000 RPM	1000 RPM	22
ENCODER LINES	The SSD Microtach has 1000 lines per revolution as	10 to 5000	1000	24
	standard, proprietary encoders of other specifications can be normalised by setting this parameter as appropriate.		1000	27
ANALOG TACH CAL	Trim adjustment of the motor speed at 100% speed demand.	0.9800 to 1.1000	1.1000	23
	Note:- Primary tacho calibration is achieved by the selection of resistors R4 and R5 on the calibration board.	1.1000		
ZERO SPEED	Zero motor speed for zero setpoint input trim adjustment.	± 5.00%	0.000	10
OFFSET		1 5.00%	0.00%	10
ARMATURE I (A9)	Sets operation of current meter output, either bipolar or unipolar.	UNIPOLAR/ POLAR	BIPOLAR	25
SPDFBK ALARM LEVEL	The speed feedback alarm compares speed feedback to	0.00 to	50.00%	180
	armature voltage. The alarm level is the difference at which the alarm is set.	100.00%	1	
STALL THRESHOLD	Stall comparator threshold level.	0.00 to 200.00%	95.00%	263
STALL TRIP	Delay stall detected to stall output.	0.1 to 600.0	10.0 SECS	224
DELAY † OVER SPEED	Speed feedback level for alarm.	SECS 0 to 200%	125.00%	188
LEVEL			125.00%	100
FIELD I. CAL	Trim adjustment of the motor field at 100% field current demand.	0.9800 to 1.1000	1.0000	182
	Note:- Primary field calibration is achieved by the selection of resistors R6 and R7 on the calibration board.			
	ALARMS	<u></u>		
FIELD FAIL	INHIBIT Minimum field current level alarm.	ENABLED/	ENABLED	19
		INHIBITED		19
5703 RCV ERROR	5703 Serial communications receive error. Only active in Slave Mode.	ENABLED/ INHIBITED	ENABLED	111
STALL TRIP	Motor stalled alarm.	ENABLED/ INHIBITED	INHIBITED	28
TRIP RESET	Faults latched when False.	TRUE/FALSE	TRUE	305
SPEED FBK ALARM	Speed feedback alarm.	ENABLED/	ENABLED	81
ALANN	Speed feedback alarm operation.	INHIBITED		
	a) Aramture Voltage (fixed field)			
	 (i) Different signs (ii) Speed Feedback and Armature Voltage differ by more than Speed Feedback Alarm level. 			
	b) Field Weakening			
	If armature voltage is greater than 50% and Speed Feedback is less than 10% then Speed Feedback			
	Alarm active.			<i>a</i> -
ENCODER ALARM	Encoder option board alarm.	ENABLED/ INHIBITED	ENABLED	92

PARAMETER NAME	DESCRIPTION	RANGE	DEFAULT	TAG
CURRENT LIMIT	CURRENT LOOP	0.00		
PROP GAIN	Internal main current limit parameter. Proportional gain control for armature current PI	0.00 to 200.00% 0.00 to 200.00	100.00%	15
	loop. This parameter is normally set during the autotune function.	0.0010200.00	45.00	16
INT GAIN	Integral gain control for armature current PI loop. This parameter is normally set during the autotune function.	0.00 to 200.00	3.50	17
AUTOTUNE	Initiating control for current loop autotune adjustment. (See description at the end of table)	ON/OFF	OFF	18
† FEED FORWARD	Autotune control parameter. Set by autotune algorithm. Do not adjust independently.	0.10-50.00	2.00	136
DISCONTINUOUS	Autotune control parameter. Set by autotune algorithm. Do not adjust independently.	0.00 to 200.00%	12.00%	137
ADDITIONAL DEM	Additional Current Demand Input.	$\pm 200\%$	0.00%	30
BIPOLAR CLAMPS	Select Bipolar/Unipolar Clamps.	ENABLED/ DISABLED	DISABLED	90
REGEN MODE	Regen mode Enable.	ENABLED/ DISABLED	ENABLED	201
POS I CLAMP	Positive clamp in Bipolar Clamp Mode.	$\pm 200.00\%$	100.00%	301
NEG I CLAMP	Negative clamp in Bipolar Clamp Mode.	$\pm 200.00\%$	-100.00%	48
I DMD ISOLATE	Speed Demand or Current Demand.	ENABLED/ DISABLED	DISABLED	119
	SPEED LOOP			
PROP. GAIN	Speed loop PI proportional gain adjustment.	0.00 to 200.00	10.00	14
INT. TIME CONST.	Speed loop PI integral gain adjustment.	0.001 to 30.000 SECS	0.500 SECS	13
INT. DEFEAT	Inhibits the integral part of the speed loop PI control to give proportional gain only speed control.	ON/OFF	OFF	202
ENCODER SIGN	Since the encoder feedback cannot be reversed electrically, the signal polarity must be reversed by the control software.	POSITIVE/ NEGATIVE	POSITIVE	49
SPEED FBK SELECT	Three options are available:-		ARM VOLTS FBK	47
	i) Armature voltage feedback	ARM VOLTS FBK		
	ii) Analogue tachogenerator feedback	ANALOG TACH		
	iii) Encoder feedback.	ENCODER		
	iv) Analogue/Encoder feedback	ENCODER/ ANALOG		
ADVANCED				
ADAPTION				
MODE	 0 - Disabled 1 - Speed Feedback Dependant 2 - Speed Error Dependant 3 - I Demand Dependant 	0 to 3	0	268
SPD BRK 1 (LOW)	For further information	0.00 to 100.00%	1.00%	269
SPD BRK 2 (HIGH)	please refer to the	0.00 to 100.00%	5.00%	270
PROP. GAIN	Engineering Department at	0.00 to 200.00	5.00	271
INT. TIME CONST.	SSD Limited	0.001 to 30.000 SECS	0.500 SECS	272

PARAMETER NAME	DESCRIPTION	RANGE	DEFAULT	TAG
	SPEED LOOP /Continued			
I GAIN IN RAMP	Integral Gain Scaling during Ramping period	0.00001 to 2.0000	1.0000	274
† <u>POS LOOP P GAIN</u>	Position Loop Proportional Gain	0.00 to 200.00%	0.00%	273
† <u>I COMP</u>	Additional I Demand during Ramping Period	± 100.00%	0.00%	275
ZERO SPD. OUENCH				
ZERO SPD. LEVEL		0.00 to 200.00%	0.50%	284
ZERO IAD LEVEL	Thresholds for scan override.	0.00 to 200.00%	1.50%	285
<u>SETPOINTS</u>				
SETPOINT 1	SPEED SETPOINT 1 [Default sum O/P]	± 100%	0.00%	289
SIGN 2 (A3)	SPEED SETPOINT 2 SIGN	POSITIVE/ NEGATIVE	POSITIVE	9
RATIO 2 (A3)	SPEED SETPOINT 2 RATIO	± 3.0000	1.0000	7
SETPOINT 2 (A3)	SPEED SETPOINT 2 - Fixed Setpoint	± 100%	0.00%	290
SETPOINT 3	SPEED SETPOINT 3 [Default Ramp O/P]	± 100%	0.00%	291
SETPOINT 4	SPEED SETPOINT 4 [Default 5703 I/P]	± 100%	0.00%	41
	STANDSTILL			
STANDSTILL LOGIC	Standstill Logic inhibites the controller at zero setpoint and zero speed, i.e. standstill.	ENABLED/ DISABLED	DISABLED	11
ZERO THRESHOLD	Signal Level which determines zero setpoint and zero speed threshold. [Zero Speed Relay Threshold]	0.00-5.00%	2.00%	12
† SOURCE TAG	Speed Demand Source	0 to 255	89	306
	SETPOINT SUM			
RATIO 1	Analogue Input 1 Scaling	± 3.0000	1.0000	6
RATIO 0	Analogue Input Ø Scaling	± 3.0000	1.0000	7
SIGN 1	Analogue Input 1 Polarity	POS-NEG	POSITIVE	8
SIGN 0	Analogue Input 0 Polarity	POS-NEG	POSITIVE	292
DEADBAND WIDTH	Analogue Input 1 Deadband	0.0 to 100.0%	0.0%	131
INPUT 1	Analogue Input 1 Value	± 100%	0.00%	100
INPUT 0	Analogue Input Ø Value	± 100%	0.00%	309

2.1 SERIAL LINK PARAMETERS

PADAMETED				Т	'AG
PARAMETER	DESCRIPTION	RANGE	DEFAULT	MAIN PORT P1	AUXILIARY PORT P2
SERIAL LINK ENABLE	ENABLE PORT OPERATION	ENABLE/ DISABLE	DISABLED	146	147
GROUP ID (GID)	EUROTHERM PROTOCOL GROUP IDENTITY	0 - 7	0	138	140
UNIT ID (UID)	EUROTHERM PROTOCOL UNIT IDENTITY	0 - 15	0	139	141
ASCII/BINARY	EUROTHERM PROTOCOL SELECTION OF EITHER ASCII OR BINARY	ASCII/ BINARY	ASCII	148	149
BAUD RATE	SERIAL COMMUNICATIONS TRANSMIT AND RECEIVE DATA RATE	300 - 19200	9600	150	151
ESP SUP. (ASCII)	ESP SUPPORT ENABLE	ENABLE/ DISABLE	DISABLED	152	153
CHANGEBAND (BIN)	CHANGE IN VALUE TO TRIGGER BINARY ENQUIRY POLL UPDATE	0.00% to 100.00%	0.00%	144	145
ERROR REPORT			00C0	158	159
PNO.7	CONTROL WORD FOR MULTIPARAMETER POLLING	0 to FFFF	FFFF	142	143
SYSTEM PORT	<u>(P3)</u>			:	
····				:	TAG
PARAMETER	DESCRIPTION	R	ANGE	DEFAULT	TAG SYSTEM PORT
PARAMETER 5703 SUPPORT	DESCRIPTION	R	ANGE	DEFAULT	SYSTEM
·	DESCRIPTION INPUT SCALER		ANGE 3.0000	DEFAULT 0.0000	SYSTEM
5703 SUPPORT SETPOINT RATIO SETPOINT SIGN		±			SYSTEM PORT
5703 SUPPORT SETPOINT RATIO SETPOINT SIGN 5703 INPUT	INPUT SCALER INPUT SIGN 5703 INPUT DIAGNOSTIC	± POSITIV	3.0000	0.0000	SYSTEM PORT 132
5703 SUPPORT SETPOINT RATIO SETPOINT SIGN 5703 INPUT 5703 OUTPUT	INPUT SCALER INPUT SIGN 5703 INPUT DIAGNOSTIC 5703 OUTPUT DIAGNOSTIC	POSITIV ± 3	3.0000 E/NEGATIVE	0.0000 POSITIVE	SYSTEM PORT 132 133
5703 SUPPORT SETPOINT RATIO SETPOINT SIGN 5703 INPUT	INPUT SCALER INPUT SIGN 5703 INPUT DIAGNOSTIC	± POSITIV ± 3 ± 3 DISABL	3.0000 E/NEGATIVE 00.00%	0.0000 POSITIVE 0.00%	SYSTEM PORT 132 133 187
5703 SUPPORT SETPOINT RATIO SETPOINT SIGN 5703 INPUT 5703 OUTPUT	INPUT SCALER INPUT SIGN 5703 INPUT DIAGNOSTIC 5703 OUTPUT DIAGNOSTIC	POSITIV ± 3 ± 3 DISABLI S	3.0000 E/NEGATIVE 00.00% 00.00% ED/MASTER/	0.0000 POSITIVE 0.00% 0.00%	SYSTEM PORT 132 133 187 189
5703 SUPPORT SETPOINT RATIO SETPOINT SIGN 5703 INPUT 5703 OUTPUT 5703 MODE	INPUT SCALER INPUT SIGN 5703 INPUT DIAGNOSTIC 5703 OUTPUT DIAGNOSTIC 5703 STATUS	± POSITIV ±3 ±3 DISABLI S O P3 PORT	3.0000 E/NEGATIVE 00.00% 00.00% ED/MASTER/ LAVE	0.0000 POSITIVE 0.00% 0.00%	SYSTEM PORT 132 133 187 189
5703 SUPPORTSETPOINT RATIOSETPOINT SIGN5703 INPUT5703 OUTPUT5703 MODEDUMP MMI \rightarrow P3	INPUT SCALER INPUT SIGN 5703 INPUT DIAGNOSTIC 5703 OUTPUT DIAGNOSTIC 5703 STATUS DUMP COMPLETE MMI TEXT DATA T	TO P3 PORT RESET "SET-UP PA	3.0000 E/NEGATIVE 00.00% 00.00% ED/MASTER/ LAVE	0.0000 POSITIVE 0.00% 0.00% DISABLE	SYSTEM PORT 132 133 187 189

2.2 SYSTEM PARAMETERS

FUNCTION	DESCRIPTION	RANGE	DEFAULT	TAG
	CONFIGURE I/O			
CONFIGURE ENABLE	PERMIT I/O CONFIGURATION FLAG []	ENABLED/ DISABLED	DISABLED	39
ANIN 1 (A2)	ANALOG INPUTS			
CALIBRATION	ANALOG INPUT SCALING DETERMINING VALUE = 100%	± 3.0000	1.0000	230
MAX VALUE	MAXIMUM VALUE OF SCALED ANALOG	± 300.00%	+ 100.00%	231
MIN VALUE	MINIMUM VALUE OF SCALED ANALOG	± 300.00%	- 100.00%	232
DESTINATION TAG	DESTINATION OF SCALED ANALOG INPUT VALUE	0 to 255 2	100	246
ANIN 2 (A3)		l		
CALIBRATION	ANALOG INPUT SCALING DETERMINE VALUE = 100%	± 3.0000	1.0000	233
MAX VALUE	MAXIMUM VALUE OF SCALED ANALOG	± 300.00%	+ 100.00%	234
MIN VALUE	MINIMUM VALUE OF SCALED ANALOG INPUT	± 300.00%	- 100.00%	235
<u>ANIN 3 (A4)</u>				
CALIBRATION	ANALOG INPUT SCALING DETERMINE VALUE = 100%	± 3.0000	1.0000	236
MAX VALUE	MAXIMUM VALUE OF SCALED ANALOG	± 300.00%	100.00%	237
MIN VALUE	MINIMUM VALUE OF SCALED ANALOG INPUT	± 300.00%	- 100.00%	238
DESTINATION TAG	DESTINATION OF SCALED ANALOG INPUT VALUE	0 to 255 2	5	249
<u>ANIN 4 (A5)</u>				
CALIBRATION	ANALOG INPUT SCALING DETERMINE VALUE = 100%	± 3.0000	1.0000	239
MAX VALUE	MAXIMUM VALUE OF SCALED ANALOG INPUT	± 300.00%	+ 100.00%	240
MIN VALUE	MINIMUM VALUE OF SCALED ANALOG	± 300.00%	- 100.00%	241
DESTINATION TAG	DESTINATION OF SCALED ANALOG INPUT VALUE	0 to 255 2	48	250
ANIN 5 (A6)				
CALIBRATION	ANALOG INPUT SCALING DETERMINE VALUE = 100%	± 3.0000	1.0000	242
MAX VALUE	MAXIMUM VALUE OF SCALED ANALOG	± 300.00%	100.00%	243
MIN VALUE	MINIMUM VALUE OF SCALED ANALOG	± 300.00%	- 100.00%	244
DESTINATION TAG	DESTINATION OF SCALED ANALOG INPUT VALUE	0 to 255 2	301	247

During the process of reconfiguration there is a danger that "Tags" will be connected to wrong parameters. To avoid this possibility all configuration links must be temporarily "disconnected" during the configuration process and the flag set to "enabled" to allow the activity. Failure to reset the flag to "disabled" after reconfiguration will cause an Alarm to be generated, "Configure Enabled", which will prevent drive operation. (In early versions of software the alarm may read F200)

2 Destination Tags are limited to valid points i.e. An analogue input cannot be connected to a digital output.

FUNCTION	DESCRIPTION	RANGE	DEFAULT	TAG
ANOUT 1 (A7)	ANALOG OUTPUTS			
% TO GET 10V	VALUE WHICH PRODUCES 10V OUTPUT	± 300.00%	100.00%	245
SOURCE TAG	SOURCE OF OUTPUT VALUE	0 to 255 2	62	245
<u>ANOUT 2 (A8)</u>				
% TO GET 10V	VALUE WHICH PRODUCES 10V OUTPUT	± 300.00%	100.00%	248
SOURCE TAG	SOURCE OF OUTPUT VALUE	0 to 255 2	63	252
DICINI 1 (CC)	DIGITAL INPUTS		•••••	
<u>DIGIN 1 (C6)</u> VALUE FOR TRUE	VALUE OF TAG ASSUMED WHEN INPUT IS	± 300.00%	0.01%	103
VALUE FOR FALSE	VALUE OF TAG ASSUMED WHEN INPUT IS FALSE	± 300.00%	0.00%	104
DESTINATION TAG	DESTINATION OF ASSUMED TAG VALUE	0 to 255 2	90	102
DIGIN 2 (C7)				
VALUE FOR TRUE	VALUE OF TAG ASSUMED WHEN INPUT IS TRUE	± 300.00%	0.01%	106
VALUE FOR FALSE	VALUE OF TAG ASSUMED WHEN INPUT IS FALSE	± 300.00%	0.00%	107
DESTINATION TAG	DESTINATION OF ASSUMED TAG VALUE	0 to 255 2	118	105
DIGIN 3 (C8)				
VALUE FOR TRUE	VALUE OF TAG ASSUMED WHEN INPUT IS TRUE	± 300.00%	0.01%	109
VALUE FOR FALSE	VALUE OF TAG ASSUMED WHEN INPUT IS FALSE	± 300.00%	0.00%	110
DESTINATION TAG	DESTINATION OF ASSUMED TAG VALUE	0 to 255 2	119	108
	DIGITAL OUTPUTS			
<u>DIGOUT 1 (B5)</u> THRESHOLD (>)	THRESHOLD WHICH VALUE MUST EXCEED TO SET OUTPUT TRUE	± 300.00%	0.00%	195
MODULUS	OUTPUT SET TRUE FOR ABSOLUTE OR MODULUS OF TAG VALUE	TRUE/ FALSE	TRUE	43
SOURCE TAG	SOURCE OF TAG VALUE USED TO SET OUTPUT	0 to 255 2	77	97
DIGOUT 2 (B6) THRESHOLD (>)	THRESHOLD WHICH VALUE MUST EXCEED TO SET OUTPUT TRUE	± 300.00%	0.00%	196
MODULUS	OUTPUT SET TRUE FOR ABSOLUTE OR MODULUS OF TAG VALUE	TRUE/ FALSE	TRUE	44
SOURCE TAG	SOURCE OF TAG VALUE USED TO SET OUTPUT	0 to 255 2	122	98
DIGOUT 3 (B7)				
THRESHOLD (>)	THRESHOLD WHICH VALUE MUST EXCEED TO SET OUTPUT TRUE	± 300.00%	0.00%	197
MODULUS	OUTPUT SET TRUE FOR ABSOLUTE OR MODULUS OF TAG VALUE	TRUE/ FALSE	TRUE	45
SOURCE TAG	SOURCE OF TAG VALUE USED TO SET OUTPUT	0 to 255 2	125	99

FUNCTION	DESCRIPTION	RANGE	DEFAULT	TAG
	CONFIGURE 5703			
SOURCE TAG	5703 OUTPUT SOURCE TAG	0 to 255 2	89	134
DESTINATION TAG	5703 INPUT DESTINATION TAG	0 to 255 2	41	135
	BLOCK DIAGRAM			
RAISE/LOWER DEST	RAISE LOWER SOFTWARE BLOCK OUTPUT DESTINATION	0 to 255 2	0	260
RAMP O/P DEST	ANALOGUE RAMP OUTPUT DESTINATION	0 to 255 2	291	293
SPT SUM O/P DEST	SETPOINT SUM OUTPUT DESTINATION	0 to 255 2	289	294

SYMBOLIC ALARM MESSAGES

These are generally internal software or hardware errors and therefore have no obvious meaning to the end user. If these should occur, please investigate or contact Eurotherm Drives Technical Support as appropriate in each case.

No.	Description	Action
0xF003	Pre-Ready Fault	Coding not present. Replace power board or chassis. (If an External Stack, check coding supply first).
0xF100	CAM full	Call Technical Support
0xFF01	Internal software error in slot_read()	Call Technical Support
0xFF02	Unimplemented micro opcode	Call Technical Support
0xFF03	Aux Power Fail	Check Aux Supply and/or Mains Input
0xFF04	"TRAP" Software Interrupt	Call Technical Support
0xFF05	Internal software error in slot_read_pass()	Call Technical Support
0xFF06	Internal software error in slot_write()	Call Technical Support

Variable Name C RW ReConfig r0 YES YES
eprom version
srd.rd.ramp_up_time
srd.rd.ramp_down_time
srd.rd.mode
jog.input
anin scale[1]
sumd sign1
spdlopd.speed_setpoint2
spdiopd.spdfbkd.zero_spd
standstilld.enable
standshild Zero Infeshold
sparopa.spra.m. gam
sodiood clamp scale
pro dain
int gain
autotune, mmi
motor_field.inhibit
spdiopd.spdfbkd.avf.vascale
spdtopd.spdfbkd.avf.rascale
spdlopd.spdfbkd.utach.hnd_pd
anin_scale[5]
spdiopd.spdibkd.utach.pisrev
meter_grive
stond rd3 ramo down time
stall_trip.inhibit
stop_0_spd_thresh
spdtopd.additional_i_demand
spdiopd.profile.n2
spdiopd.profile.n1
aparoparpointe. fbkston
firstop
iffb_delay
mmi_data_full_menus
mmi_data.value_delay
dg inhibit
sys_io
spdiopd.speed_setpoint4
spdiops.spis.saturated
dgout_abs[0]
dgout_abs[1]
dgout_abs[2]
6
spdiopd.spdfbkd.fbk_select
spdlopd.neg_output
spdlopd.spdfbkd.utach.sign
anin_raw{0]
anin_raw[1
anin_raw[z]

28			HW HeContig	tig lype	u X	Max	Hestricted	Serial Format Derault		i non	n
ß		anin_raw[4]	ON ON		-100	100	Q	S_DEC100			Z
	ANOUT 1 (A7)	anout_s[0]	ON ON	VOLTS1	-100	108	QN	S_DEC100			55
8	ANOUT 2 (AB)	anout_s[1]	ON ON	NOLTS1	8	<u>8</u>		S_DEC100			28
21	TERMINAL VOLTS	arm_volts	ON ON	PERCENTAGE1	0	ONFEFF	ON .	S_DEC100			57
ଞ୍ଚ	TACH INPUT (B2)	spdtops.spdfbks.tach	ON ON	PERCENTAGE1	-120	150	Q	S_DEC100			ജ
ଫ୍ଷ	R.P.M.	spdlops.spdfbks.rpm	ON ON	RPMO	0	600	Ŷ	S_DEC			23
8	BACKEMF	spdiops.spdfbks.avf	ON ON	PERCENTAGE1	-150	150	QN	S_DEC100			8
61	ACTUAL NEG I LIM	spdlops.actual_neg_clamp	ON NO	PERCENTAGE1	-150	150	ò	S_DEC100			5
62	SPEED FBK	spdlaps.spdfbks.speed_fbk		PERCENTAGE2	-150	150	ş	S_DEC100			8
63	SPEED SETPOINT	spdlops.total_speed_setpoint	ON ON	PERCENTAGE2	-150 -1	150	õ	S_DEC100			ន
64	SPED ERCOR	spdiops.error	ON ON	PERCENTAGE2	-150	150	Q	S_DEC100			64
ß	CURRENT FBK	scaled jatbk	ON ON	PERCENTAGE1	-150	150	Q	S_DEC100			65
99 90	CURRENT DEMAND	spdlops.i_demand	ON ON	PERCENTAGE1	300	800	Q	S DEC100		-	88
6	ACTUAL POSILIM	spdlops.actual_pos_clamp	ov ov	PERCENTAGE1	-300	300	Q	S_DEC100			67
88	START (C3)	dgin_s[0]	ON ON	ON OFF	0	-	ð	S_BIN			88
8	JOG INPUT (C4)	dgin_s[1]	on N	ON OFF	0		0N NO	S_BIN			69
2	ENABLE (CS)	dgin_s{2}		ON_OFF	0		Q	S_BIN	-	-	2
7	DIGIN 1 (C6)	dgin_s[3]	ON ON	ON_OFF	0	•-	ON N	S_BIN			7
22	DIGIN 2 (C7)	dgin_s[4]	ON ON	ON_OFF	0	-	NO	SBIN			72
2	DIGIN 3 (C8)	dgin_s[5]	ON N	ON OFF	0		Q	S_BIN			73
74	DIGOUT 1 (B5)	dgout_s[0]	ON ON	ON_OFF	0	1	NO	S_BIN			74
75	DIGOUT 2 (B6)	dgout_s[1]	ON ON	ON_OFF	0	-	ON N	S_BIN			75
76	DIGOUT 3 (B7)	dgout_s[2]	ON ON	ON OFF	0	-	Q	S_BIN			76
1	AT ZERO SPEED	standstilld.spds.a_eq_b	ON ON	TRUE_FALSE	0	-	Q	S BIN	-		1
78	AT ZERO SETPOINT	standstilld.spts.a_eq_b		TRUE_FALSE	0		0 V	S_BIN		-	78
62	AT STANDSTILL	standstills.standstilf		TRUE_FALSE	0	•	ò	S_BIN			62
ଞ୍ଚ	PROGRAM STOP	p_stop	***	TRUE_FALSE	0		Q	SBIN			ଛ
8	SPEED FBK ALARM	speed_feedback.inhibit		ENABLE_INHIBITED	0		ç	S BIN			20
82	DRIVE START	start		ON OFF		-	ç	S_BIN			82
83		main_contactor	ON ON	ENABLED_DISABLED		-	õ	S BIN			ß
2	DRIVE ENABLE	quench_flag		ENABLED_DISABLED	_	-	ç	S_BIN			2
85	RAMP OUTPUT	srs.rs.output		PERCENTAGE2	8 	100	õ	S_DEC100			85
88	SETPOINT SUM OP	sums output		PERCENTAGE2	<u>8</u>	<u>10</u>	ò	S_DEC100			86
<u>8</u> 7	POSICIAMP	spdlops.pos_clamp		PERCENTAGE1	0	ଛ	2	S_DEC100			87
88	NEGICLAMP	spdlops.neg_damp	_	PERCENTAGE1	0	ଛ	Ş	S_DEC100			88
စ္ဆ	SPEED DEMAND	spdłops.speed_demand		PERCENTAGE2		8	2	S DECTOO			8
8	BIPOLAR CLAMPS	spdiopd.clamp_mode		ENABLED_DISABLED		- 8			+	+	3 5
55 8	PROGSTOP1 LIM	spdlopd_program_stop_1_lim		PERCENIAGEZ		8+	2 2 2		1	+	5 8
28	ENCODER ALARM					- 6	N N	S DECIÓN			38
8 9		spandourpromeanida aire do output?		ON OFF			29	S BIN			3
8	AUX DIGOUT 2	aux dq output2	-	ON_OFF	0	-	9	S_BIN			56
Ś	AUX DIGOUT 3	aux_dg_output3	L	ON_OFF	0	1	N	S_BIN			96
67	SOURCE TAG DG OUT 1 (85)	dgout_source[0]		DEC	0	QCFF Q	YES	s dec			97
88	SOURCE TAG DG OUT 2 (66)	dgout_source[1]		DEC	0	Ц ХО	YES	S_DEC			88
8	SOURCE TAG DG OUT 2 (87)	dgout_source[2]		DEC	0	붱	YES	s_DEC			g
8	Ξ	sum_input1		PERCENTAGE2	8	8		S_DEC100			8
₽	- ł	minimum_dead_time		DEC	0	OXFFFF		S_DEC100	·		<u>.</u>
8		dgin_dest_slot[0]	_	DEC	Special	Special		S_DEC			3
103	~r	dgin_true[0]		PERCENTAGE2		300	2			-	3
20	VALUE FOR FALSE (26)	dgin_false[0]		PERCENIAGE2	-3UU		2 Å		-+-		ŧ,
ŝ	_	agin dest slott i j	VEC VEC	DECC		200	39		+		3 5
<u>8</u> 2		agin_trief!		DEDCENTAGE?		88		s DECIM	+	+	107
2		ogin_raise(i)			3	3	2	4-11-11-1	-	-	5

......

NO DEC Special
PERC
NO HEX
ENAB
NO HEX
NO PASS_WORD
- <u>-</u>
D L L L
YES PERCENTAGE
YES POS_NEG
Q
NO PERCENIAGEZ
o c
ON ON
-+
NO ENABLED DISABLED
NO ASCILBIN
BAUD
+
NO ENABLED DISABLED
ENABLED DISABLED
ΔŦ
YES ON OFF

MMI FeX		ÅÅ	HeContig	Type	Min	Max	Restricted	പ്പ	ault User lag
	min_cycle_time	YES	ç	HEX	0	OXFFFF	ON N	S_HEX	162
	enable_pi_boost	YES		HEX	0	2	YES	ХH S	163
- I	1_rate	YES		ΔĦ	0	OXFFFF	ð	s_HEX	164
1	1_ref1	YES	Q V	PERCENTAGE2	906- 1900	300	g	S_DEC100	165
	sel_lad_source	YES	Q N	ĞН	0	~	YES	S_HEX	166
1	1_ref2	YES	2	PERCENTAGE2	800	88	ð	S_DEC100	167
F	aux_enable	YES		ON OFF	0	+	ç	S_BIN	168
	start_field	g		ENABLED_DISABLED	0	-	Ş	S_HEX	169
1	enable_field	YES		ENABLED_DISABLED	0		YES	S_HEX	170
	ifd_mmi	YES	YES	PERCENTAGE2	0	10	Ş	S_DEC100	171
	łki	YES		NONE2	0	10	Ŷ	S_DEC100	172
	fkp	YES	YES	NONE2	0	10	ð	S_DEC100	173
	sel_fid_weaken	YES	YES	ENABLED DISABLED	0		YES	S HEX	174
ĺ	fid_tead	YES	Ŷ	NONE2	0.1	20	ş	S DEC100	175
	fid_lag	YES	Ş	NONE2	0	200	2	S DEC10000	176
	spillover_gain	YES	ş	NONE2	0	10	2 2	S DECI00	177
	spillover_bias	YES	Ş	PERCENTAGE2	0	10	2	S DEC100	178
	fid_weak_limit	YES	ş	PERCENTAGE2	0	10	YES	S DEC100	179
	spdiopd.spdfbkd.spdfbk_alarm_window	1.	g	PERCENTAGE1	0	0	Cz	S DECIDO	180
	H.	+	Q	PERCENTAGE?	150	2 5		S DECTON	181
	fid cur ratio	YES	Ç	DATION	8	3 5		C DECTION	101
	lid	2 OZ	ON N	DERCENTAGE?	8 -	e e		2 DECTION	102
	fta_mmi	2	2 CZ	DECH	150	150	22		100
	quench delav	YES	YES	SPCS1		202			105
	field_standby	YES	YES	OUFNCH STANDBY	,	3 -			186
	p3_unratioed_output	YES	YES	PERCENTAGE?	300	- 00		S DECIM	187
_	spdlopd spdfbkd.over_speed_level	YES	YES	PERCENTAGE2	0	200	g	S DEC100	188
	xmit_word	9 2	Ŷ	PERCENTAGE2	800	88	YES	S DEC100	189
	peak_hw_delay	YES	Q	Ř	0	OKFFFF	YES	s DEC	190
	bemf lead	YES	9 Z	DEC	0.1	ଞ	g	S_DEC	191
	bemf_lag	YES	Ŷ	DEC	0,1	જ	Ŷ	s_bec	192
1	tick_length	9 V	Q	DEC	0	OXFFFF	Q X	S_DEC	193
	disc_adapt_pot	YES	NO	DEC	0	10	Q	S_DEC100	194
	dgout_threshold[0]	YES	YES	PERCENTAGE2	300	300	YES	S_DEC100	195
[-	dgout_threshold[1]	YES	YES	PERCENTAGE2	9067 7	300	YES	S_DEC100	196
	dgout_threshold[2]	YES	YES	PERCENTAGE2	-300	300	YES	S_DEC100	197
	p3_baud	YES	9 2	BAUD	0	Н Х	YES	S_HEX	198
	spdlopd.inv_time.delay	۳ ۳	g	SECS1		800	YES	S_DEC10	199
	spdlopd.inv_tme.rate	Щ. Ш		SECSI	-	800	YES	S_DEC10	200
-+-	two_quad	Э С		ENABLED_DISABLED	0		YES	S_HEX	201
	sparopa.spld.int_defeat	YES YES	YES	ON_OFF	0	-	ð	ΣĦ_s	202
-+-		Ş	<u>Q</u>	PERCENTAGE2	0	ଷ୍ପ	YES	S_DEC100	203
+-	sparapa.inv_ume.aiming_point		2	PERCENTAGE2	0	200	ÆS	S_DEC100	204
-†-	10 ID:ndoinds		2	PERCENTAGE2	0	200	g	S HEX	S 22
			2	HATIOS	300	800	2	s_HEX	506
	crimed ration		2 ÿ	ALIO3	0 8	000		S_HEX	202
+	select fid i control	3 Y Y		SURA D	Ŗ	З <u></u> ,	2 j	S_DECTUUUU	
┢──	fid vots ratio	XEN C	3 8	DEDCENTACE1		- 9	2		2010
	sys_health_inhibit	YES	39	HFX		VEFER 0	N N		211
	jog.mode	ş	2 2	JOG MODE	Τ	7	3 <u>C</u>	S HFX	212
	zero_cu0ffset	ð	Ŷ	ΔŦ		OXFFFF	2 2	XaH s	213
-	zod_threshold	YES	ð	Ŕ		0×FFFF	Q	S HEX	214
	•				Ī		-		i

F i -			NW Het		Ē	XEM		I fingle () format chart	,	ι ά
216	PROG STOP LIMIT	stopd.p_stop_time_delay	YES Y		0	600	Q	S DFC10		<u>]</u> [
217	STOP LIMIT	stopd.stop_time_delay	YES Y		c	009		S DECID		217
218	JOG SPEED 1	jog.jog_setpoint1	YES Y	E C	8	8	22	S DECI00		218
219	JOG SPEED 2	jog.jog_setpoint2		 	-100	8	S	S DECION		210
	12 BIT DAC	dac_10_12	YES	NO ENABLED DISABLED	+	-	YES	S BIN		38
	UTACH ALRM DELAY	microtach delay	ļ	<u> </u>		OXFFFF	2 2	S HEX	1	
83	PRED STEP	pred_step	YES	NO HEX	0	OXFFFF	YES	S HO		
223	SCAN THRESHOLD	scan_threshold_level			0	OXFFFF	YES	SHEX		S
225	ODAW COTTO	stall_trip.delay		NO DEC		600	YES	S_DEC		224
206	CHANL SPEED	jog.craw speed		YES PERCENTAGE2	-10	100	Ő	S_DEC100		x
100	TEAN HW OFFSEI	peak hw offset			0	200	YES	S_HEX		226
220	AUX MODE 0	jog.aux_mode_0	_	_	0		9 V	S_BIN	 	22
000	MOUE 1	jog.mode_1	_	YES TRUE_FALSE	0	-	Q	S_BIN		228
	<u> </u>	precision_check		-	0	-	YES	S_HEX		529
NINH Dez		anin_scale[0]			90 90	300	ç	S_DEC100		R
1 HNINH 102		anin_max(0)			-300	300	Q	s_DEC100		231
ININE COL	-l'	anin_min[0]	_	YES PERCENTAGE2	900 - 300	300	ş	S_DEC100		232
201 A LINE	CALIBRATION (A3)	anin_scale[1]			300	300	NO	S_DEC10		33
200 ANINC	MAX VALUE (A3	anin_max[1]			-200	200	ð	S_DEC100		234
SWINH COT	MIN VALUE	anin_min[1]		YES PERCENTAGE2	-200 -	200	ò	S_DEC100		235
Con NH 002	CALIBRATION (44)	anin_scale[2]			906 9	300	N	S_DEC10		236
230 A		anin_max[2]		_	ଞ୍ଚ	800	N	S_DEC100		237
230 4114	CALIDDATION (44)	anin_min[2]	_		ŝ	õ	g	S_DEC100		R
240 ANIN4		anin_scalejoj		YES RATIO3	8	ଚ୍ଚ	Q	S_DEC10		82
241 ANILE	MIN VALUE	ann_maxis			8	300	2	S_DEC100		240
242 ANIMS	CALIBRATION	anta min soulotal		2		88	2	S_DEC100		241
243 ANNS	1	anin sualejaj	_		8	000	2	S_DECI0	_	242
244 14112	MIN VALUE (44)	anin minist	YES YES	S PERCENTACES	200		22	S DECT00		243
245 ANOUT (% TO GET 10V (A7)	anout scale(0)	L	+	38	38				245
246 ANINE D		anin_dest_slot[0]			Snerial	Snerial	NHY NHY			2 4
247 ANUNS C	247 ANUNS DESTINATION TAG (46)	anin_dest_slot[4]	_		Special	Special	E SE	s DEC		247
248 Aucut2	% TO GET 10V (AS)		YES YES	S PERCENTAGE2	300	300	2	S DEC100		248
			YES NO	DEC	Special	Special	YES	S DEC		9
T THE NEW DO	g	anin_dest_slot[3]	YES NO		Special	Special	YES	s_DEC		8
252 A	SOUNCE ING (17)	anout source[0]	_		0	OXFF	YES	s_DEC		221
253	TAKE ID1	anout_source[1]			0	ц К	YES	s_DEC		3
254	TAKE 1822	og slack sepoint			9 -	9	ð	S_DEC100		ß
255	RESET VALLE	jog.stack_setpointz	TES YES	_	9	8	2 2	S_DEC100		5
256	INCREASE RATE	did rd rams in time		Ĩ	g,	8	2	S_DEC100		5
	DECREASE RATE	rid rd ramo down time		CECC1		898		S_DEC100		۶I ۱
258	MIN VALUE	rld.min		d d	- 8	88				õ ĝ
	MAX VALUE	rid max	Ĺ	+	88			S DECIM		S R
	RAISE/LOWER DEST	rtd.dest	L	-	8	8	2	S DEC100		260
192	HAISE INPUT	rtd.raise			0		g	S_DEC100		<u>2</u> 9
707	CTALL THEFT	rid.lower			0	-	9 2	S_DEC100	~~	262
	ALL INKESHOLD	stail_threshold	_		0	200	Ŷ	S_DEC100	2	263
	ANAL OCIDICITE COLUMN	rls.rs.output		PERCENTAGEZ	800	800	õ	S_DEC100	2	264
	ALOG IP UPTOE % C. DAMO	zero_offset_cal			8 8	300	õ	S_DEC100	N	265
267		sra.s ramp percent			•	10	2	s DEC100		266
268	MODF	IU confirmed and and and and and and and and and an		PERCENTAGE2	•	ରୁ '	2	S_DEC100		267
	SPD REK1 & OW	spatioparadapt mode	YES YES	-	0	60	2	S_HEX		8
-		spuipporadaptioneaki		HERCENTAGE2	0		2		_	ģ

YES RATIO3 0 200 NO S_DEC100 YES PERCENTAGE2 -100 100 NO S_DEC100 NO DEC 0 200 NO S_HEX NO DEC 0 200 NO S_HEX NO DEC 0 200 NO S_HEX
RATIO3 0 200 PERCENTAGE2 -100 100 DEC 0 200 DEC 100 200 DEC 100 200
PERCENTAGEZ DEC DEC DEC
2 2
₽
AHM ENDSTOP

•

	ISS.	MODIFICATION	CP.NO.	DATE	APPROVAL
	А	Initial Issue		27.03.91	
	В	General amendments and additions		17.04.91	
	С	Corrections to MMI Section, 10.6 Alarms pages 13 - 16.		22.04.91	
	D	Various alterations.		26.4.91	
	Е	Global change SLOT now called TAG.		2.05.91	
	F	Global changes and amendments.		3.05.91	
	1	General release and circulation.	6556	7.05.91	Orth
	2	General amendments and alterations to coincide with up-to-date information.	6921	22.01.92	Jek
	3	Addendum incorporated as Appendix 2 an other general corrections.	d 7616	20.05.92	GDL.
				_	
					!
I					
I					
	ŀ				
	FIRSTU	JSED ON	 MODIFICAT	ION RECÓR	<u>،</u> گ D
			590 Product N	Aanual	
	55	ENGLAND	DRAWING N ZZ059665C	IUMBER	SHT. 1 of 1